当前位置:
首页 资源下载
搜索资源 - histogram descriptor
搜索资源列表
-
1下载:
实现基于区域的亮度直方图的某些纹理描绘子:如均值、标准偏差、平滑度、三阶矩、一致性和熵。-based regional brightness histogram certain texture descr iptor : If the mean, standard deviation, smooth, Third-order moments, consistency and entropy.
-
-
0下载:
基于纹理谱描述子的图像检索
提出一种新的纹理谱描述子应用于基于内容的图像检索中.讨论了小波变换的思想和纹理谱概念的联
系,根据纹理的视觉特性,提出纹理模式等价类的概念,设计出更合理的纹理谱描述子来描述图像的纹理特征.该纹
理模式刻画了领域内像素灰度变化模式,以纹理谱直方图方式表示图像纹理内容.分析了纹理谱的对称不变性和旋
-This paper presents a new texture spectrum descr iptor for content-based image
-
-
0下载:
本文运用尺度空间理论检测人体,通过集成
面向梯度与histogramof尺度空间理论
-Human detection is the task of finding presence and position
of human beings in images. In this paper, we apply
scale space theory to detecting human in still images. By integrating
scale space
-
-
0下载:
Image descr iptor based on Histogram of Orientated Gradients for gray-level images. This code
was developed for the work: O. Ludwig, D. Delgado, V. Goncalves, and U. Nunes, Trainable
Classifier-Fusion Schemes: An Application To Pedestrian De
-
-
0下载:
PHOG的matlab描述。 将图像的PHOG描述符运用MATLAB显示出最终的直方图。-PHOG the matlab descr iption. Descr iptor of the image using MATLAB PHOG show the final histogram.
-
-
0下载:
edge histogram descr iptor
-
-
0下载:
为了准确地对监控场景中的运动目标进行语义上的分类, 提出了一种基于聚类的核主成分分析梯度方向直方图和二叉决策树支持向量机的运动目标分类算法.利用背景减法提取运动目标前景区域, 并识别出潜在候选运动目标.利
用提出的基于聚类的核主成分分析的梯度直方图描述子提取候选运动目标的特征, 以较低维数的数据有效地描述运动目标的有效特征. 将提取的运动目标特征输入二叉决策树支持向量机, 实现多类目标的准确分类. 通过在不同视频序列上的实验验证, 提出的算法对运动目标进行较好地分类, 而且在运算速度方面较传
-
-
0下载:
本文提出了一种复杂条件下基于子空间梯度方向直方图跟踪的方法,通过大量样本的离线训练构建目标的投影子空间,并用梯度方向直方图在子空间的投影作为新的目标描述特征. 为了满足实时性的要求,采用积分直方图方法
提高粒子特征的计算速度 然后结合粒子滤波方法在子空间中计算粒子与训练样本集之间的相似度,进而估计目标的运动参数.-A subspace t racking method is proposed to t rack target s under complex environment s. Fi
-
-
1下载:
edge histogram descr iptor
-
-
1下载:
用matlab进行图像检索,基于边缘直方图(EHD)描述子,它是MPEG-7标准中提出的一种边缘描述子,它具有描述图像亮度变化的方向和频率的能力。资料为主程序代码。-Matlab for image retrieval, based on the descr iption of the edge histogram (EHD) sub, it is proposed in the MPEG-7 standard descr iptor an edge, it has the direction
-
-
0下载:
Image descr iptor based on Histogram of Orientated Gradients for gray-level images. This code %was developed for the work: O. Ludwig, D. Delgado, V. Goncalves, and U. Nunes, 'Trainable %Classifier-Fusion Schemes: An Application To Pedestrian Detectio
-
-
0下载:
图像梯度方向直方图描述子:,该方法使用梯度方向直方图(Histogram of Oriented Gradients,简称HOG)
特征来表达人体,提取人体的外形信息和运动信息,形成丰富的特征集,然后使
用支持向量机线性SVM 分类器对这些特征集进行训练。-Image gradient orientation histogram descr iptor
-
-
0下载:
- Color provide an important clue for extracting the new color LBP histogram features for face recognition using Local Binary Pattern technique. To reduce redundancy RGB color space converted to YCbCr color space. The Local Binary Pattern is a non pa
-
-
1下载:
This code calculated the LDP histogram and is based on B Zhang, Y Gao, S Zhao & J Liu, "Local Derivative Pattern Versus Local Binary Pattern: Face Recognition With High-Order Local Pattern Descr iptor," Image Processing, IEEE Transactions on, vol.19,
-
-
0下载:
The code below is implementation of HOG (Histogram-of-Oriented Gradients) descr iptor and object detection, introduced by Navneet Dalal and Bill Triggs.
The computed feature vectors are compatible with the INRIA Object Detection and Localization
-
-
0下载:
efficient LBP Local binary patterns (LBP) is a type of feature used for classification in computer vision. LBP is the particular case of the Texture Spectrum model proposed in 1990.[1][2] LBP was first described in 1994.[3][4] It has since been found
-
-
0下载:
Edge Histogram Descr iptor
-
-
0下载:
下面的代码是实现HOG(附柱状图导向梯度)
描述符和目标检测,通过那伏乃尔达拉尔和比尔Triggs介绍。
所计算的特征向量是与兼容
INRIA目标检测与定位工具包
(http://pasca
-
-
0下载:
方向梯度直方图(Histogram of Oriented Gradient, HOG)特征,计算机视觉和图像处理中用来进行物体检测的特征描述子的实现-Histogram of oriented gradients (Histogram of Oriented Gradient, HOG) characteristics, computer vision and image processing used for object detection feature descr iptor real
-
-
0下载:
HOG 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子(The Histogram of Oriented Gradient (HOG) feature is a feature descr iptor used for object detection in computer vision and image processing.)
-