搜索资源列表
CKPCA-HOG-SVM
- 为了准确地对监控场景中的运动目标进行语义上的分类,提出了一种基于聚类的核主成分分析梯度方向直方图和二又决策树支持向量机的运动目标分类算法。-In order to accurately monitor the movement of scene targets semantic classification, the clustering based on kernel principal component analysis of gradient direction histograms,
hog
- Hog try I try to implement hog descr iptor
objectdet20070707
- cvpr07年 对象检测代码 hog+svm,压缩包里含有行人,车辆等分类器,可以直接检测-cvpr07 on object identification code hog+ svm, compression bag with pedestrians, vehicles and other classifiers
Blog_hogCompute6.tar
- Opencv HOG (Histogram of Orientation Gradient) training based on Dalal method. When you try to use Opencv HOG, you may not know how the training of the SVM model is done. Here is the example Linux with Opencv2.1
CODE
- 1.GeometricContext文件是完成图片中几何方向目标分类。 参考文献《Automatic Photo Pop-up》Hoiem 2005 2 GrabCut文件是完成图像中目标交互式分割 参考文献《“GrabCut” — Interactive Foreground Extraction using Iterated Graph Cuts》 C. Rother 2004 3 HOG文件是自己编写的根据HOG特征检测行人的matlab代码 4 虹膜识别程序
exercise5
- Matlab HOG exercise matlab svm learning
PedestrianDetectionHoG
- HOG特征行人检测 SVM支持向量机 分类-HOG feature pedestrian detection SVM support vector machine classification
HOG-SVM
- it s HoG descr iptor, the writer code has some errors, and I have correct the errors, and the code is right under C+-it s HoG descr iptor, the writer code has some errors, and I have correct the errors, and the code is right under C+
hog
- HOG+SVM 应用OPENCV来检测人体图像中是否有人-HOG+SVM application the OPENCV to detect whether someone in the human body image
HOG-SVM
- 基于opencv实现利用HOG+SVM进行物体分类-Classification of objects using HOG+SVM based on OpenCV
HOG-SVM-train
- HOG+SVM对于正负样本训练过程,根据样本生产对应的支持向量机,便于人体检测-HOG,SVM train samples,support Vector
SVM
- Hog+SVM是速度和效果综合平衡性能较好的一种行人检测方法。后来,虽然很多研究人员也提出了很多改进的行人检测算法,但基本都以该算法为基础框架。因此,Hog+SVM也成为一个里程表式的算法被写入到OpenCV中。在OpenCV2.0之后的版本,都有Hog特征描述算子的API,而至于SVM,早在OpenCV1.0版本就已经集成进去了;OpenCV虽然提供了Hog和SVM的API,也提供了行人检测的sample,遗憾的是,OpenCV并没有提供样本训练的sample。这也就意味着,很多人只能用Ope
hog_svm
- matlab实现hog+svm图像二分类(Matlab implementation of hog and svm images two categories)
hog_svm
- hog+svm的Demo,实测可以运行,搭配INRIA图片集准确率为0.96. 不足:直接把图片缩小为64*128来检测,window的滑动没有。(the demo of HOG+SVM, could run,; not enough: it resize image to 64*128. the window have no slide.)
SVM
- 通过HOG获取特征,用SVM对图像进行分类。(The feature is acquired by HOG, and the image is classified by SVM.)
SVM
- 使用HOG提取特征,SVM进行图像分类,可以进行两种以上分类(Using HOG to extract features and SVM for image classification)
hog-feature
- 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主(The Histogram
svm
- 基于hog特征的svm的图像分类识别,matlab程序(Image classification and recognition based on hog-svm)
HOG-SVM-classifer-master
- 利用传统的SVM-HOG算法,进行行人检测(HOG-SVM algorithm for pedestrian detection)
HOG+SVM进行图片中行人检测
- 行人检测HOG+SVM进行图片中行人检测,提供训练用的pos和neg样本,效果还可以;没有SVM工具箱的,压缩包里已经提供了,安装一下即可(Pedestrian detection HOG + SVM for pedestrian detection in pictures, providing POS and neg samples for training, the effect is good; without SVM toolbox, the compression package ha