搜索资源列表
K-均值聚类算法
- K-均值聚类算法,对数据进行聚类分析,可用于提取关键帧等。用matlab实现,K-means clustering algorithm, cluster analysis of data that can be used, such as key frame extraction. Using matlab to achieve
K-means
- 针对一维数据集K-means算法的实现, 针对一维数据集K-means算法的实现, 针对一维数据集K-means算法的实现。-k-means
k-means
- 数据挖掘算法源代码 k-means聚类算法的C#代码-Source code data mining algorithms k-means clustering algorithm C# code
k-means
- 这个文件实现了一维数据的K-均值聚类算法,可以直接运行,但不能处理多维的-This file implements a one-dimensional data, K-means clustering algorithm can be directly run, but you can not deal with multidimensional
k-means
- java实现的k-means算法,具有可视化界面,可以作为数据挖掘的作业处理。-java implementation of the k-means algorithm with a visual interface that can handle a data mining operation.
K-Means.java K-means分群法
- K-Means.java K-means分群法(组数数据皆不固定,以读入档案, iris.txt)-K-Means.java K-means grouping method (group, none fixed the number of data in order to read the file, iris.txt)
k-means
- 关于数据挖掘中k-means算法的英文介绍分析-Data Mining on the k-means algorithm analysis in English, introduced
k-means
- 实现了K均值算法,可以对movielens上的数据进行自动分类,给出推荐值,是数据挖掘中的信息推介必要的算法工具。可以直接对movelens的数据进行聚类-Implementation of the K-means algorithm, can movielens on automatic classification of data, recommend give the value of data mining are to promote the necessary information
K-MEANS
- 数据挖掘,K-means源码,数据集为iris-Data mining, K-means source code for the iris data set
k-means
- K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。-K-means algorithm is based on the division of the classic clustering method, is ten classic one of data mining algorithm. K-means the
K-Means PCA降维
- K-Means算法,不要求建立模型之后对结果进行新的预测,没有相应的标签,只是根据数据的特征对数据进行聚类。主成分分析降维对数据进行可视化操作,对features进行降维.(K-Means algorithm does not require the establishment of the model after the new prediction of the results, there is no corresponding tag, but only on the character
K均值对iris数据集聚类
- k-means算法对irisdata数据集进行聚类(The k-means algorithm clustering the irisdata datasets)
k-means
- 此种k-means 算法可以快速的对随机产生的随机数据,进行分类,而且分类的效果比较好,效果直观。(This kind of k-means algorithm can quickly classify randomly generated random data and classify it, and the classification effect is better and the effect is intuitive.)
1、K-means学习
- K-means算法MATLAB仿真,利用一副图像作为数据实现K聚类算法仿真(K-means algorithm, MATLAB simulation)
K-means
- 在里面的的是一些关于k-means的东西,用的mnist数据(I try the Mnits data and use K-means to doing the clustering)
K-means聚类
- K-means聚类程序,可用于聚类问题,自动产生大量数据,生成聚类图片(K-means clustering program, can be used for clustering problems, automatically generate large amounts of data, generate clustering images)
k-means
- 实现k-means聚类算法,里面有数据可以作为测试(This file is use to achieve k-means clustering algorithm.There are data can be used as a test.)
k-means聚类算法
- k-means聚类算法的代码实现,只需要更改数据就可以实现,而且有注释,很容易懂(The code implementation of the k-means clustering algorithm can be realized only by changing the data, and there are notes that make it easy to understand)
K-means
- K-means算法是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则。K-means算法以欧式距离作为相似度测度,它是求对应某一初始聚类中心向量V最优分类,使得评价指标J最小。算法采用误差平方和准则函数作为聚类准则函数。(The K-means algorithm is a hard clustering algorithm, which is representative of the prototy
K-means聚类
- 应用K-means聚类算法,实现对iris数据集的分类(Using K-means clustering algorithm to realize the Classification of iris dataset)