当前位置:
首页 资源下载
搜索资源 - lda feature extraction
搜索资源列表
-
0下载:
LDA和2LDA特征提取程序,并可以对比两种方法的区别
-
-
1下载:
线性判别分析(LDA)用于特征选择,可以对数据集或者图像提取有用特征,用于分类或者聚类等机器学习应用中-Linear Discriminant Analysis (LDA) for feature selection, application in dataset or image feature extraction, for classification or clustering applications in machine learning
-
-
0下载:
子空间学习的代码,主要包括人脸识别中常用的特征提取算法如pca lda 以及目前常见的流行学习的相关代码-Subspace learning the code, mainly including commonly used in face recognition feature extraction algorithms such as pca lda and the current prevalence of common learning-related code
-
-
0下载:
该程序包实现了模式识别中的两个特征提取算法,主成分分析PCA和线性判别分析LDA。采用C++语言编写,开发环境VS。 程序包还提供了两个测试样本文件。-The package to achieve the recognition of the two feature extraction algorithm, principal component analysis PCA and linear discriminant analysis LDA. Using C++ language, dev
-
-
0下载:
matlab图像处理工具相,使用了主成分分析,ANN,SVM等方法。-This toolBox used in the image processing(feature extraction and classification)
PCA,LDA,ICA,DCT,RBF,RBE,GRNN,KNN,minimum distance,SVM, and others
-
-
1下载:
(压缩包里一共有5个代码)
pca+lda+粗糙集+模糊神经网络
saveORLimage.m将ORL人脸库分为测试集ptest和训练集pstudy存为imagedata.mat
1.savelda.m将人脸库先进行pca降维,再用lda进行特征提取,得到新的测试集ldatest和训练集ldastudy存为imageldadata.mat
2.对ldastudy进行离散化(discretimage.m),得到离散化矩阵disdata,存入到imagedisdata.mat
-
-
0下载:
线性差别分析法(LDA)提取人脸图像特征点子程序-Linear differential analysis (LDA) face image feature extraction process ideas
-
-
0下载:
2DLDA PK LDA for feature extraction
-
-
0下载:
编程是由pca和lda结合的脸部特征提取,用于三维图像。-multilinear principal component analysis combined with Linear discriminant analysis 3D face feature extraction.
-
-
0下载:
In this paper, we show how support vector machine (SVM) can be
employed as a powerful tool for $k$-nearest neighbor (kNN)
classifier. A novel multi-class dimensionality reduction approach,
Discriminant Analysis via Support Vectors (SVDA), is in
-
-
1下载:
lda线性特征提取,用于人脸识别,首先进行小波特征提取后用lda提取特征。-lda linear feature extraction for face recognition, first of all, after feature extraction using wavelet feature extraction using lda.
-
-
0下载:
线性判别分析(LDA)是一种较为普遍的用于特征提取的线性分类方法。但是将LDA直接用于人脸识别
会遇到维数问题和“小样本”问题。人们经过研究,通过多种途径解决了这两个问题并实现了基于I,DA的人脸识
别 文章对几种基于LDA的人脸识别方法做了理论上的比较和实验数据的支持,这些方法包括Eigenfaces、Fish—
erfaceS、DLDA、VDLDA及VDFLDA。实验结果表明VDFLDA是其中最好的一种方法。-Low—dimensional feature representat
-
-
2下载:
用matlab编写的lde算法,实现的数据分析,抽取分类信息和压缩特征空间维数-Lde prepared using matlab algorithm to achieve the data analysis, feature extraction classified information and compressed space dimension
-
-
0下载:
对随机选择的iris数据,用LDA进行特征提取,然后用K近邻分类器分类的完整程序-Feature extraction using LDA,and perform classification via KNN
-
-
0下载:
用pca 和 lda 实现数据的降维,加快机器的特征提取的速度。-Pca and lda of data with dimension reduction, feature extraction to speed up the speed of the machine.
-
-
0下载:
用于lda特征脸提取,可以调整参数,选取特征向量-Lda feature extraction for face, you can adjust the parameters, select the feature vector
-
-
0下载:
Kernel Discriminant Analysis a kernel extension of Linear Discriminant Analysis technique which is a well-known feature extraction technique.-Kernel Discriminant Analysis is a kernel extension of Linear Discriminant Analysis technique which is a well
-
-
0下载:
svd with LDA face recognition feature extraction
-
-
0下载:
机器学习中几种典型的降维方法, PCA, LDA等-typical feature extraction methods(PCA, LDA) in machine learning
-
-
0下载:
Feature extraction for speech recognition based on orthogonal acoustic-feature planes and LDA
-