当前位置:
首页 资源下载
搜索资源 - leave one out cross
搜索资源列表
-
0下载:
New in this version:
Support for multi-class pattern recognition using maxwins, pairwise [4] and DAG-SVM [5] algorithms.
A model selection criterion (the xi-alpha bound [6,7] on the leave-one-out cross-validation error).
-New in this version
-
-
0下载:
Feature scaling for kernel Fisher discriminant analysis using leave-one-out cross validation.
FS-KFDA is a package for implementing feature scaling for kernel fisher discriminant analysis.-Feature scaling for kernel Fisher discrim inant analysis us
-
-
0下载:
基于NSVM的两类SVM分类器,matlab7.1运行通过,main中做了PCA的特征提取、leave one out cross-valiation和5-fold cross-validation(重复10次的平均值)
-
-
0下载:
The leave-one-out cross-validation scheme is a method for estimating
% the average generalization error. When calling
% [Eloo,H] = loo(NetDef,W1,W2,PHI,Y,trparms) with trparms(1)>0, the network
% will be retrained a maximum of trparms(1) itera
-
-
0下载:
The code implements a probabilstic Neuraol network for classification problems trained with a Leave One Out Cross Validation Scheme in Matlab (version 7 or above). The following toolboxes are required: statidtics, optimization and neural networks.
-
-
0下载:
M-files for PLS, PLS-DA, with leave-one-out cross-validation and prediction
-
-
0下载:
留一法交叉检验,用于得到留一法交叉检验系数-Leave one out cross-validation for the leave-one-out cross examination coefficient
-
-
0下载:
LS-SVM Leave-One-Out Cross-Validation Demo
G. C. Cawley, "Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs", Proceedings of the International Joint Conference on Neural Networks (IJCNN-2006), pages 1661-1668, Vanco
-
-
0下载:
cross validation leave one out for calculating pls rmsecv
-
-
0下载:
SVM Light工具箱 Matlab接口,已经编译好,可直接用(SVMlight, by Joachims, is one of the most widely used SVM classification and regression package. It has a fast optimization algorithm, can be applied to very large datasets, and has a very efficient implementation of
-
-
1下载:
LWP是一种Matlab / Octave工具箱实现局部加权多项式回归(也被称为局部回归/局部加权散点平滑/黄土/ LOWESS和核平滑)。使用此工具箱,您可以使用九个具有度量窗口宽度或最近邻窗口宽度的任意一个内核来拟合任意维度的数据的局部多项式。还提供了一个优化内核带宽的函数。优化可采用留一交叉验证,GCV,AICC、AIC,FPE,T,执行,或单独的验证数据。鲁棒拟合也可用。(LWP is a Matlab/Octave toolbox implementing Locally Weight
-
-
6下载:
SURROGATES工具箱是一个多维函数逼近和优化方法的通用MATLAB库。当前版本包括以下功能:
实验设计:中心复合设计,全因子设计,拉丁超立方体设计,D-optimal和maxmin设计。
代理:克里金法,多项式响应面,径向基神经网络和支持向量回归。
错误和交叉验证的分析:留一法和k折交叉验证,以及经典的错误分析(确定系数,标准误差;均方根误差等;)。
基于代理的优化:高效的全局优化(EGO)算法。
其他能力:通过安全裕度进行全局敏感性分析和保守替代。(SURROGATES Toolbox
-