搜索资源列表
用matlab实现最小风险bayes准则
- 用matlab实现最小风险bayes准则
Bayes
- 使用Matlab实现,包括一维特征最小错误率bayes分类器;二维特征最小错误率bayes分类器;二维特征最小风险bayes分类器以及使用的数据集合。-Using the Matlab implementation, including the minimum error rate of one-dimensional characteristics of bayes classifier two-dimensional characteristics of the minimum error
judger
- 最小错误率和最小风险贝叶斯分类器,附带示例数据-Minimum error rate and minimum risk Bayes classifier, with sample data
Bayes-Matlab
- 基于最小错误率,和最小风险的Bayes分类器Matlab 实现 -Bayes Matlab
bayes
- 贝叶斯决策包含最小风险和最小错误概率两种情况的仿真-Bayesian decision-making included the minimum risk and minimum error probability of the two simulation
work_for_pattern_recognition
- 通过设计线性分类器;最小风险贝叶斯分类器;监督学习法分层聚类分析;K-L变换提取有效特征,设计支持向量机对给定样本进行有效分类并分析结果。-By designing a linear classifier minimum risk Bayes classifier supervised learning method hierarchical cluster analysis K-L transform to extract efficient features, designed to
Bayes
- 传统贝叶斯分类器,最小错误率贝叶斯分类器、最小风险贝叶斯分类器-Traditional Bayesian classifier, the minimum error rate classifier, minimum risk Bayes classifier
贝叶斯判决
- 假定某个局部区域细胞识别中正常w1和非正常w2 两类先验概率分别为: 正常状态:P(w1)=0.9 ; 异常状态:P(w2)=0.1 。 现有一系列待观察的细胞,其观察值为: -2.67 -3.55 -1.24 -0.98 -0.79 -2.85 -2.76 -3.73 -3.54 -2.27 -3.45 -3.08 -1.58 -1.49 -0.74 -0.42 -1.12 4.25 -3.99 2.88 -0.98 0.79 1.19 3.07 两类的类条件概率符合正态分布