搜索资源列表
qr
- 矩阵QR分解.数字分析的比较难的程序,值得一看 -matrix QR decomposition. Digital analysis of the more difficult procedures, eye-catcher
Java实现QR分解法求矩阵的所有特征值及特征向量
- Java实现QR分解法求矩阵的所有特征值及特征向量,Java realization of QR decomposition for matrix eigenvalues and all eigenvectors
qr
- 矩阵QR分解的算法,使用openMP实现, 请在支持并行计算的机器上编译运行-Matrix QR decomposition algorithm, the use of openMP implementation, to support parallel computing in the compile and run on the machine
double_QR
- 运用双线性QR分解法求矩阵特征值及特征向量,并含有QR分解法子程序-Use of bilinear matrix QR decomposition method for eigenvalue and eigenvector and contains procedures for QR decomposition method
QR
- 矩阵QR算法 能计算任何矩阵的Q和R,结果很精确,望大家修改使其精简点-Matrix QR algorithm can calculate any matrix Q and R, the results are accurate, we modify and adapt them to look to streamline the point
QR
- 在对矩阵进行拟上三角化的基础上利用带双步位移的QR分解法求解矩阵的特征值-To be in the upper triangular matrix based on the use of dual-band step-by-step displacement of QR decomposition method for solving matrix eigenvalue
qr
- 这是用MPI做的关于矩阵的qr分解的程序,程序中很好的实现了分解过程的并行性-This is done using MPI on the matrix qr decomposition procedures, procedures to achieve a good decomposition process parallelism
QR
- 带双步位移的QR分解法求解矩阵的特征值和特征向量-With two-step displacement of the QR decomposition method for solving matrix eigenvalue and eigenvector
Matrix
- 一些矩阵运算的函数,包括两个矩阵相加,两个矩阵相减,两个矩阵相乘,矩阵复制,矩阵求逆的全选主员高斯-约当法,矩阵的三角分解(LU分解),求Hessenberg矩阵全部特征根的QR法,约化一般实矩阵为Hessenberg矩阵的初等相似变换-A function of a number of matrix operations, including the sum of two matrices, subtract two matrices, the two matrices, matrix dup
QR
- 矩阵全部特征值的QR方法,包括化一般矩阵为上Hessenberg阵,平面旋转阵(Givens变换阵),用 Givens变换对上Hessenberg阵作QR分解,原点平移加速的QR方法等-Eigenvalue matrix of all the QR methods, including the general of the Hessenberg matrix array, planar array rotation (Givens transformation matrix), with the
qr
- 可用于一般及特殊矩阵即奇异矩阵进行QR分解-Can be used for general and special matrix that is singular matrix QR decomposition
18-6
- 该代码为矩阵qr分解的并行算法,采用的是MPI编程方法-The code for the matrix qr decomposition parallel algorithms, using the MPI programming
A_QR
- void qr(double *a, double *d, int n) 矩阵的QR分解 假设数组an*n在内存中按行优先次序存放,此函数使用HouseHolder变换将其就地进行QR分解。 d为输出参数,d[0,n)存放QR分解的上三角矩阵对角线元素。 bool householder(double const *qr, double const *d, double *b, int n) 求线性代数方程组的解。 假设矩阵qrn*n为某个矩阵an*n的QR分解,在内
QR
- a QR decomposition (also called a QR factorization) of a matrix is a decomposition of the matrix into an orthogonal and an upper triangular matrix. QR decomposition is often used to solve the linear least squares problem, and is the basis for a parti
matrix-tezhengzhijisuan
- 通过求矩阵特征多项式的根来求其特征值 幂法求矩阵的主特征值及主特征向量 瑞利商加速幂法求对称矩阵的主特征值及主特征向量 收缩法求矩阵全部特征值 收缩法求矩阵全部特征值 位移逆幂法求矩阵离某个常数最近的特征值及其对应的特征向量 QR基本算法求矩阵全部特征值 -Characteristic polynomial by the root of a matrix to find the eigenvalues of a matrix power m
householderqr
- householder 矩阵 qr分解程序-householder matrix qr decomposition process
matrix
- 此包包含了众多矩阵处理程序,能够满足矩阵处理的一般要求,由于将各功能分开到不同的“.cpp”文件中,故使用时需要用户自行选取更换合适自己使用的“.cpp”文件。其中,矩阵功能有:输出矩阵、矩阵转置、矩阵归一化、判断矩阵对称、判断矩阵对称正定、全选主元法求矩阵行列式、全选主元高斯(Gauss)消去法求一般矩阵的秩、用全选主元高斯-约当(Gauss-Jordan)消去法计算实(复)矩阵的逆矩阵、用“变量循环重新编号法”法求对称正定矩阵逆、特兰持(Trench)法求托伯利兹(Toeplitz)矩阵逆、
matrix-factorial
- 要求完成课堂上讲的关于矩阵分解的LU、QR(Gram-Schmidt)、Orthogonal Reduction (Householder reduction 和Givens reduction)程序实现,要求如下: 1、一个综合程序,根据选择参数的不同,实现不同的矩阵分解; 2、可以用matlab等编写程序,需附上简单的程序说明,比如参数代表什么意思,输入什么,输出什么等等; 3、一定是可执行文件,不能是word或者txt文档。附上源代码,不能为直接调用matlab等函数库
Matrix
- 实现一个矩阵类,该类包含简单的矩阵运算,矩阵求行列式,初等变换法矩阵求逆,雅可比法矩阵特征值分解,householder变换法矩阵QR分解,矩阵LU分解,QR分解与反幂法求矩阵特征值与特征向量。 -A matrix class, include simple matrix operator, determinant of matrix, inverse of matrix, matrix eigenvalue decompose by Jacobi iteration, matrix QR
QR
- QR分解,本程序实现了任意矩阵的QR分解-This program is for matrix qr-decomposition