搜索资源列表
exact_alm_rpca
- RPCA (Robust Principal Component Analysis)是目前用于矩阵填充、图像去噪的最有效的优化方法。该代码是求解RPCA的一种数值算法——Exact ALM(Exact Augmented Lagrange Multiplier)-The most basic form of the exact ALM function is [A, E] = exact_alm_rpca(D, λ), and that of the inexact ALM function i
MSP-TEST44X-Practice-code
- MSP-TEST44X 学习板光盘资料及实验说明 本学习板是按照教育大纲,采纳国内外许多单片机实验仪的优点,保持了传统机的实验 项目,增加了以实用技术为主的许多实验。实验内容涉及到端口,时钟,FLASH 读写,看 门狗,硬件乘法器,TIMER_A_操作,TIMER_A ,ADC&bt&lcd,通讯操作(232,485, SPI),键盘操作(独立按键,行列按键),LED 显示,LCD 点阵操作,扩展 DATA FLASH 操作, EEPROM 共 1
zoom
- 简单的图像缩放程序 先读入图像矩阵A zoom(A,n),n为缩放倍数-Simple image scaling procedure to read into the image matrix A zoom (A, n), n for the scaling multiplier
matrix3x3
- 3*3矩阵的乘法器代码!!! !!! !!! !!!!1-3* 3 matrix multiplier code~
ImageMatrix
- 图像的矩阵运算 用于图像像素的尺度变换,归一化;图像读取,阈值分割,矩阵的加减乘数运算,以及图像的读写;数据类型支持int,double,以及复数complex类型-Image matrix operations for image pixels scale transformation, normalization image reads, threshold segmentation, the multiplier matrix addition and subtraction opera
AnewdiscretefractionalFouriertransform
- A new discrete fractional Fourier transform based on constrained eigendecomposition of DFT matrix by Lagrange multiplier method
inexact_alm_rpca
- RPCA (Robust Principal Component Analysis)是目前用于矩阵填充、图像去噪的最有效的优化方法。目前最有效的算法是ALM(Augmented Lagrange Multiplier)。ALM分为Exact ALM和Inexact ALM。 该代码是Inexact ALM,收敛速度比Exact ALM快!-RPCA (Robust Principal Component Analysis) is used for matrix filling, image de
Ponytail
- How to Simulate A Ponytail - The Sample App This is a very simple Lagrange Multiplier constrained dynamics simulator to accompany my articles and lectures on How to Simulate a Ponytail. For more information, see http://chrishecker.com/H
Martirx
- 矩阵乘法,输入两个矩阵的每一个元素,输出相乘后的结果-Matrix multiplier, input two matrices for each element, the result of multiplying the output
inexact_alm_mc
- 增广拉格朗日乘子方法求解RPCA问题的方法,得到矩阵的稀疏成分和低秩成分。-argumented lagrange multiplier method that can make matrix be decomposed to a sparse matrix and low-rank matrix.
RateDF
- 信息率失真函数的迭代计算 信息率失真函数的迭代计算,迭代精度取为10^(-7) 在信源的输入概率分布Pa和失真矩阵d已知的条件下求出信息率失真函数 函数说明: [Pba,Rmin,Dmax,Smax]=RateDF(Pa,d,S) 为信息率失真函数 变量说明: Pa:信源的输入概率矩阵,d:失真矩阵,S:拉氏乘子 Pba:最佳正向转移概率矩阵, Smax:最大拉氏乘子 Rmin:最小信
mul
- CCS环境下,在DSP硬件板上实现矩阵乘法器。-CCS environment matrix multiplier in DSP hardware board.
ADMNMF
- 基于交替方向乘子法的非负矩阵分解算法,主要用于盲分离-Alternating direction multiplier method based on non-negative matrix factorization algorithm, mainly used for blind source separation
RateDf
- 信息率失真函数的迭代计算 信息率失真函数的迭代计算,迭代精度取为10^(-7) 在信源的输入概率分布Pa和失真矩阵d已知的条件下求出信息率失真函数 函数说明: [Pba,Rmin,Dmax,Smax]=RateDF(Pa,d,S) 为信息率失真函数 变量说明: Pa:信源的输入概率矩阵,d:失真矩阵,S:拉氏乘子 Pba:最佳正向转移概率矩阵, Smax:最大拉氏乘子 Rmin:最小信息率,Dmax:允许的最大失真度-Information on the calculation of the r
Performance-of-an-embedded-optical-vector-matrix-
- An embedded architecture of optical vector matrix multiplier (OVMM) is presented. The embedded architecture is aimed at optimising the data flow of vector matrix multiplier (VMM) to promote its performance. Data dependence is discussed when the O
Planar-integrated-optical-vector-matrix-multiplie
- We present the design of a planar-integrated optoelectronic vector-matrix multiplier. The inherent parallel-processing potential is fully exploited by optical implementation of multiplications and summations. Planar integration makes the free-spa
backgroud-model2
- 针对传统背景建模存在的问题,文中基于低秩矩阵恢复原理,直接从视频序列中分离出前景物体和背景模型。已有低秩矩阵恢复算法的迭代计算过程中涉及大量的奇异值分解,而这些奇异值分解一般非常耗时且不够简洁,文中在非精确增广拉格朗日乘子法中引入线性时间奇异值分解算法,以得到更加有效的背景建模算法。基于 实际视频序列实验,结果表明该改进算法具有更好的建模效果和较少的运算时间。-In this paper,a novel method is present based on low-rank matrix r
matrix
- 设计一个简单的2x2阶的矩阵乘法器, A,B 为2*2矩阵 求:C=A*B-Order to design a simple 2x2 matrix multiplier, A, B 2* 2 matrix: C = A* B
Vector_Matrix_Multiplier
- VHDL Vector Matrix Multiplier