搜索资源列表
Adoptmeanvaluewavefilteringwaytodislodgenoisetothe
- Adopt mean value wave filtering way to dislodge noise to the image-Adopt mean value wave filtering way to disl odge noise to the image
middle
- 用Visual C++实现中值和均值滤波图像恢复处理程序实例-Using Visual C++ implementations of the value and the mean filter image restoration processing examples
MSSIM
- Source code of the MSSIM (Mean Structure Similitary Index). MSSIM is a measure of distortion static images. It s comparing distorted image with reference image and as the result return value between 0 and 1. The quality criteria is one of the most cl
Thresholding-using-mean-shift
- 基于mean shift的阈值分割matlab代码,先借助Mean Shift算法的分割特性将灰度值相近的元素进行聚类,然后,在此基础上应用阈值分割算法,达到将图像与背景分离的目的。-Threshold based on mean shift segmentation matlab code, the first split with the Mean Shift algorithm similar to the gray value characteristics of the element
otsu
- OTSU Gray-level image segmentation using Otsu s method. Iseg = OTSU(I,n) computes a segmented image (Iseg) containing n classes by means of Otsu s n-thresholding method (Otsu N, A Threshold Selection Method from Gray-Level Histograms, IEEE
ImageProc
- 一些常用的图像处理cpp和对应的matlab接口 是非常常用的一些代码-Quick list of the source included: imhist_thresh.cpp: Generate histogram from data,# of bins based on unique values. imsmarthist_thresh.cpp: equalize data based on histogram imsmartstd_thresh.cpp: equal
HistDemoA1
- 数字图像处理 中值处理 均值处理 直方图均衡化-Digital image processing deal with the mean value of histogram equalization deal
finger3
- 判断分析法从图象灰度直方图中把灰度值的集合用阀值 T分成两类,然后根据两个类的均值方差(类间方差)和各类的方差(类内方差)的比为最大来确定阀值。-Analysis to determine from the image histogram of the gray value threshold with the set T into two categories, and then based on two types of mean-variance (between-class varian
normalise
- Normalises image values to 0-1, or to desired mean and variance Usage: n = normalise(im) Offsets and rescales image so that the minimum value is 0 and the maximum value is 1. Result is returned in n. If the image is colour the
improvedDWT
- 一种基于DWT的自适应数字水印算法。先将图像进行DWT分解,然后根据选定像素与其四邻域均值的关系,确定要嵌入的水印值。-DWT-based adaptive digital watermarking algorithm. DWT decomposition of the image first, then the selected pixel and its neighbors according to the relationship between the mean field, deter
image-processing-
- 这是个图像处理的源代码,是本人自己编写的,实现的功能如下: 锐化、边沿检测:套用模版。另外还有一个自定义模版,供用户自行设计模版运行,从而实现其他功能,如线检测。 浮雕:本像素减相邻像素,再加一个常数得到的。 直方图均衡化则套用步骤,根据课本步骤来编写。 提取轮廓:若该点为黑点,八邻域也为黑点,则就把该点变白。 阈值分割分为固定阈值分割(即二值化)和动态阈值分割(切割若干子图,求均值,该均值即子图的阈值)。 区域生长:把种子和4邻域的点分别比较,两者之差小于阈值,且该4邻
HW1
- 图像处理作业 用matlab显示直方图 累积分布函数 加高斯噪声 再用平滑降噪 都是自己编的程序-Given the test image "Lenna" 256*256 with 256 gray levels, do the following: 1) Using MATLAB display the test image. 2) Display the intensity histogram of the test image. 3) Using the im
zhongzhilvbo-
- 数字信号处理、图像处理 中值定理有关原理内容 快速算法-Digital signal processing, image processing, the mean value theorem principle content Fast Algorithm
DigitalImageProcessing
- 灰度直方图,图像中值、均值滤波,图像腐蚀、膨胀,图像二值化等-Histogram, image value, mean filtering, image erosion, dilation, image binarization
fourth
- 读入图像,统计其各点信息,获得均值,对图像进行二值化,重复上述过程,直到两次阈值之差小于0.5-Read into the image, statistical points of information to obtain the mean value, the binarized image, repeat the process until the difference between the two threshold less than 0.5
image-smoothing
- 用c#语言实现图像的加噪,然后采用均值滤波和中值滤波对图像进行去噪处理。-use c# realize image denoising,and apply mean value and mid-value smoothing
image2-mean-value
- finding image value Mahalanobis Euclidean ,centroid and reshape the image-finding image value Mahalanobis Euclidean ,centroid and reshape the image....
quality--index-of-image
- 此文档中的代码可以计算5种图像的质量参数,分别是:图像灰度均值、图像方差、图像平均梯度、熵和峰值信噪比及均方误差。-The code in this document can be calculated five kinds of image quality parameters, namely: the image gray value, image variance, average gradient image, entropy and peak signal to noise ratio
matlab-Image-Processing
- Matlab,Image Processing,including Mean Value Filtering,MidValue Filtering,Laplacian Transformation,Locating Center of Stripes.With GUI Interface