搜索资源列表
mopso
- 智能微粒群学习算法,可用于分类及特征优化等等。该算法实现过程简单,清晰。-Intelligent Particle Swarm learning algorithm can be used to optimize the classification and characteristics and so on. Implementation process of the algorithm is simple and clear.
PSO_solution_to_economic_dispatch
- 利用PSO算法解决经济批量分发问题的matlab源代码,求解多目标函数与成本最小值。-Use PSO algorithm to solve economic volume distribution of the matlab source code for solving multi-objective cost function and the minimum value.
mopsoGECCO
- Multiobjective Particle Swarm with Crowding Distance(多目标优化)-Multiobjective Particle Swarm with Crowding Distance (multi-objective optimization)
CMOPSO1
- Coello Coello等人提出了MOPSO。该程序针对测试函数 1的matlab程序。该算法引入了自适应网格机制的外部种群,不仅对群体的粒子进行变异,而且对粒子的取值范围也进行变异,且变异尺度与种群进化的代数成比例。-Handling Multiple Objectives With Particle Swarm Optimization Carlos A. Coello Coello, Member, IEEE, Gregorio Toscano Pulido, and Maximin
CMOPSO3
- Coello Coello等人提出了MOPSO。该matlab源程序针对test function 3的matlab程序。该算法引入了自适应网格机制的外部种群,不仅对群体的粒子进行变异,而且对粒子的取值范围也进行变异,且变异尺度与种群进化的代数成比例。-reference:Handling Multiple Objectives With Particle Swarm Optimization Carlos A. Coello Coello, Member, IEEE, Gregorio
CMOPSO4
- Coello Coello等人提出了MOPSO。该程序针对test function4的matlab程序。该算法引入了自适应网格机制的外部种群,不仅对群体的粒子进行变异,而且对粒子的取值范围也进行变异,且变异尺度与种群进化的代数成比例。-reference:Handling Multiple Objectives With Particle Swarm Optimization Carlos A. Coello Coello, Member, IEEE, Gregorio Toscano P
CMOPSO5
- Coello Coello等人提出了MOPSO。该程序针对test function 5的matlab程序。该算法引入了自适应网格机制的外部种群,不仅对群体的粒子进行变异,而且对粒子的取值范围也进行变异,且变异尺度与种群进化的代数成比例。-reference:Handling Multiple Objectives With Particle Swarm Optimization Writer:Carlos A. Coello Coello, Member, IEEE, Gregorio Tos