搜索资源列表
gacs_matlab_20070214
- a fast multigrid solver for geometric active contour models For a detailed descr iption of the method see the paper G. Papandreou and P. Maragos, Multigrid Geometric Active Contour Models, IEEE Transactions on Image Processing, vol. 16, no
amg1r5
- 代数多重网格法的经典程序,主要用来求解椭圆型方程-classical code of ALGEBRAIC MULTIGRID METHOD
gacs
- 利用 多重網格法所寫的 level set法-Multigrid method using level set method written in
sixpack-2.3.7
- Sixpack is a library of solvers that may be used to solve structured finite volume and finite difference discretisations of PDE s. The solvers include static methods like Jacobi s Method, SOR, SSOR, RBSOR, incomplete factorisation methods like ILU, I
multigrid--application
- 一本关于多重网格法的书,适合用于流体等专业学生-A book on multi-grid method, suitable for the fluid, and other professional students
mg
- 本程序使用Fortran语言,使用多重网格的方法求解泊松方程-This program solves Poisson s equation with multigrid method, using Fortran language
Multigrid-method
- 用多重网格法解非线性偏微分方程,假定N=4时为第0层l为输入的层数 r为MGM在在J-1层调用的次数-With multi-grid method for solving nonlinear partial differential equations, assuming N = 4 when the input layer 0 l layers r for MGM in the number of J-1 layer calls
gpaw-0.10.0.11364.tar
- GPAW is a density-functional theory (DFT) Python code based on the projector-augmented wave (PAW) method and the atomic simulation environment (ASE). It uses real-space uniform grids and multigrid methods, atom-centered basis-functions or plane-waves
MGmethod
- 多重网格法求解拉普拉斯方程算例,用7层网格进行求解-Multigrid method for solve laplace equation
ctof.m.tar
- Multigrid Solver for 1D Poisson Problem
two dimensional convection diffusion equation
- 包含求解二维对流/扩散方程的标量(给定的标量输运) 速度场,稳态和非稳态)采用有限体积法和直角坐标网格,求解Navier Stokes方程的定常和非定常采用笛卡尔网格和同位配置变量。它还包含生成笛卡尔网格(单个或多重网格)的代码,以及绘制计算结果的代码。后者的代码产生的每一个情节页后记文件:网格、速度矢量图、剖面的速度或温度,等压线,等温线和流线和压力填充图、温度或流线。更改此目录并读取本地“自述文件”文件,以获得该目录中文件的进一步信息。子目录管包含为管道流设置的代码的版本,包括入口和出口边
MG
- 多重网格求解泊松方程的Fortran程序(Using multigrid method to solve Poisson equation in Fortran language)
Multigrid
- This is a collection of files for the solution of scalar linear elliptic PDEs with a standard multigrid method.