当前位置:
首页 资源下载
搜索资源 - neural network weight
搜索资源列表
-
0下载:
% Train a two layer neural network with the Levenberg-Marquardt
% method.
%
% If desired, it is possible to use regularization by
% weight decay. Also pruned (ie. not fully connected) networks can
% be trained.
%
% Given a set of cor
-
-
0下载:
Image thresholding has played an important role in image segmentation. In this paper, we present a novel spatially weighted fuzzy c-means (SWFCM) clustering algorithm for image thresholding. The algorithm is formulated by incorporating the spatial ne
-
-
0下载:
神经网络是单个并行处理元素的集合,我们从生物学神经系统得到启发。在自然界,网
络功能主要由神经节决定,我们可以通过改变连接点的权重来训练神经网络完成特定的功能-A single neural network is a collection of parallel processing elements, we have been inspired by biological nervous system. In nature, the network function of a decisi
-
-
1下载:
用MATLAB实现二层bp神经网络的计算。可以改变阈值和权值以改进算法,并可以将该方法推广到多层网络。-Using MATLAB to achieve the second floor bp neural network computing. Can change the threshold value and weight to improve the algorithm and the method can be extended to the multi-layer network.
-
-
0下载:
用遗传算法优化BP神经网络的初始权值与阈值.使用gaot与nntools-Use ga optimative the weight and bias of BP neural network.
-
-
1下载:
SOM神经网络(自组织特征映射神经网络)是一种无导师神经网路。网络的拓扑结构是由一个输入层与一个输出层构成。输入层的节点数即为输入样本的维数,其中每一节点代表输入样本中的一个分量。输出层节点排列结构是二维阵列。输入层X中的每个节点均与输出层Y每个神经元节点通过一权值(权矢量为W)相连接,这样每个输出层节点均对应于一个连接权矢量。
自组织特征映射的基本原理是,当某类模式输入时,其输出层某一节点得到最大刺激而获胜,获胜节点周围的一些节点因侧向作用也受到较大刺激。这时网络进行一次学习操作,获胜节点
-
-
0下载:
实验中使用随机反向传播算法对构造的神经网络进行学习,最终得到构造的神经网络的权值矩阵。-Experiment using the random back-propagation algorithm to construct the neural network learning, the final structure of the neural network obtained the weight matrix.
-
-
0下载:
An Improved PSO Algorithm to Optimize BP Neural Network
Abstract
This paper presents a new BP neural network
algorithm which is based on an improved particle swarm
optimization (PSO) algorithm. The improved PSO (which
is called IPSO) algori
-
-
0下载:
Kohonen神经网络算法工作机理为:网络学习过程中,当样本输入网络时,竞争层上的神经元计算输入样本与竞争层神经元权值之间的欧几里德距离,距离最小的神经元为获胜神经元。调整获胜神经元和相邻神经元权值,使获得神经元及周边权值靠近该输入样本。通过反复训练,最终各神经元的连接权值具有一定的分布,该分布把数据之间的相似性组织到代表各类的神经元上,使同类神经元具有相近的权系数,不同类的神经元权系数差别明显。需要注意的是,在学习的过程中,权值修改学习速率和神经元领域均在不断较少,从而使同类神经元逐渐集中。-
-
-
0下载:
模拟BP神经网络,已知四个输入向量和期待输出,可以通过hebbian和delta学习算法得到权重值,从而构建网络-BP neural network simulation, the four known input vector and look forward to the output, you can get hebbian and delta weight learning algorithm to build the network
-
-
2下载:
基于遗传算法和BP神经网络控制倒立摆的程序,用遗传算法优化神经网络权值阈值以达到更好的控制效果-Based on genetic algorithm and BP neural network control procedures for the inverted pendulum, with a genetic algorithm neural network weight threshold in order to achieve better control performance
-
-
0下载:
類神經網路,訓練權重值,在做類神經的測試。-Neural network, weight training information
-
-
0下载:
神经网络进行权重分析,能够帮助我们做前期分析,可以试试。-Neural network weight analysis, the preliminary analysis can help us, you can try.
-
-
5下载:
城市交通流的运行存在着高度的复杂性、时变性和随机性,实时准确的交通流预测是智能交通系统,特别是先进的交通管理系统与先进的出行者信息系统研究的关键. 基于交通流预测的特点,给出了基于遗传算法的小波神经
网络的交通预测模型GA-WNN ,用具有自然进化规律的遗传算法来对小波神经网络的连接权值和伸缩平移尺度进行前期优化训练,部分代替了小波框架神经网络中按单一梯度方向进行参数优化的梯度下降法,克服了单一梯度下降法易陷入局部极小和引起振荡效应等缺陷. 仿真实验验证了GA-WNN 预测模型对短时交通流的
-
-
0下载:
通过遗传算法优化BP神经网络权系数,达到局部的最有、优-By genetic algorithm to optimize BP neural network weight coefficient to reach the most local, excellent
-
-
0下载:
提出了基于争议度修改权值的算法 ERstd-AdaBoost,提出了逆向权值分布策略的改
进算法 IB+。-Modify the weights based on the controversial degrees algorithms ERstd-AdaBoost, the the reverse weight distribution strategy improvement algorithm IB+.
-
-
0下载:
3隐层的bp神经网络,有详细的注释,各隐层的权值调整、输出层阈值调整,学习样本输出层至隐层一般化误差-3 bp neural network hidden layer, there are detailed notes, each hidden layer weight adjustment, the output layer threshold adjustment, learning sample output layer to the hidden layer generalization
-
-
0下载:
基于样条权函数神经网络的手写系统实现。验证了样条权函数神经系统在手写数字识别中的应用价值。-Function neural network system to achieve spline right hand. Verify that the spline weight function of the nervous system applications in handwritten digits recognition.
-
-
0下载:
Random Neural networks for cognitive radio network modelling. training and uation
of the random neural network. main file, connection file, and net file. The parameters of the network will be saved to the weight file-Random Neural networks for cogn
-
-
0下载:
神经网络~通过前30天的数据训练权值向量和阈值,预测第31天的叶绿素含量。-Neural Network- 30 days ago by data trained weight vector and threshold, forecast the chlorophyll content of the first 31 days.
-
« 12
3
4
5
6
7
8
9
10
...
14
»