搜索资源列表
SingleNeuralNetwork
- 单输出神经网络拟合如下函数:y=sinx1+xinx2+sinx3+sinx4,变量取值范围=[2,2PI]-single-output neural network function fitting as follows : y = sinx1 xinx2 sinx3 sinx4, variable value in the range = [2,2 PI]
NNTrainingofPIController
- it describes the neural network based PI controller
APITypeFuzzyneuralNetworkControllerforInductionMo
- A PI Type Fuzzy-neural Network Controller for Induction Motor Drives
GeneticWavelet
- 提出了一种基于遗传算法和小波神经网络的 PI 参数整定方法。首先 ,利用具有自然进化的遗传算法对小波神经网络的初始权值进行优化训练 ,解决了控制器网络初始权系数对控制效果产生的影响 其次 ,利用小波神经网络对PID参数进行在线调节 最后将此算法运用到电机控制系统的 P I D参数寻优中。-A new-type controller based on genetic algorithm andwavelet neural net work was presented.The genetic alg
AF_Control
- 针对LPG电喷发动机过渡工况空燃比难于精确控制的特点,提出了一种将改进Elman神经网络和常规 PI控制算法相结合的空燃比控制方法.其中Elman神经网络用于实现无传输延迟空然比信号的预测,常规PI控制器利用预测信号实现过渡工况下空然比的实时反馈控制.-LPG EFI engine for transient air fuel ratio is difficult to precisely control the characteristics of the improved Elman p
chap8
- 模糊RBF网络 高级神经网络 基于模糊RBF网络的逼近算法 Pi-Sigma神经网络-High fuzzy RBF network based on fuzzy RBF neural network approximation algorithm for network Pi-Sigma Neural Networks
BP
- 用C语言设计BP神经网络并拟合函数1.y=sinx,x :[0,2pi) 2.y=(x1)^2+(x2)^2+(x1)*(x2) ,x1,x2:[0,1)-With C-BP neural network design and fitting function 1.y = sinx, x: [0,2 pi) 2.y = (x1) ^ 2+ (x2) ^ 2+ (x1)* (x2), x1, x2: [0,1)
bp_application_2
- 用BP神经网络实现输入x=0.3*sin(i*pi/50)+0.4*sin(i*pi/25)到输出y(n)=1/(1+3*y(n-1)+x(n)*x(n))的近似模拟,其中y(0)=0.15-BP neural network input x = 0.3* sin (i* pi/50)+0.4* sin (i* pi/25) to the output y (n) = 1/(1+3* y-(n-1)+approximate simulation of x (n)* x (n)), where y
pi-sigma
- pi-sigma模糊神经网络程序,该程序是结合模糊神经网络的程序,希望能帮到大家-pi-sigma fuzzy neural network program
bp-pi
- 用经验公式优化PI参数,设计神经网络,模拟闭环系统响应。-With experience formula to optimize PI parameter, design neural networks, analog closed-loop system response.
neural-network-example
- 用前向神经元网络逼近连续函数,f(x1,x2,x3,x4)=sinx1+sinx2+sinx3+sinx4 定义域为[0,2*pi].刘宝碇老师例子仅供参考-Let us design a feedforward NN to approximate the continuous function, f(x1, x2, x3, x4) = sin x1+ sin x2+ sin x3+ sin x4 defined on [0, 2*pi]4.
function-approximation
- 基于神经网络的函数逼近源代码c++,函数为y=sin(x*pi/400)+2-Source code c++ function approximation based on neural networks, function y = sin (x* pi/400)+2000
chap8_2
- 本程序为混合型pi-sigma神经网络逼近非线性系统的程序设计-This program is a hybrid pi-sigma neural network approximation of nonlinear systems programming
BPNN
- bp神经网络逼近测试函数d=sin(2πx)sin(2πy)-The bp neural network approximation test function d = sin (2 PI x) sin (2 PI y)
cmac
- camac神经网络逼近函数,函数主要为z=(X^2+Y^2)*SIN(2*PI*X)-camac neural network approach, function primarily as z = (X ^ 2+Y ^ 2)* SIN (2* PI* X)
xbzqyqci
- 复化三点Gauss-lengend公式求pi,关于神经网络控制,LCMV优化设计阵列处理信号,相参脉冲串复调制信号,采用了小波去噪的思想。- Complex of three-point Gauss-lengend the Formula pi, On neural network control, LCMV optimization design array signal processing, Complex modulation coherent pulse train signal, U
xrbhucda
- 现代信号处理中谱估计在matlab中的使用,用于图像处理的独立分量分析,pwm整流器的建模仿真,BP神经网络用于函数拟合与模式识别,复化三点Gauss-lengend公式求pi。- Modern signal processing used in the spectral estimation in matlab, Independent component analysis for image processing, Modeling and simulation pwm rectifier
yjxfbsih
- 复化三点Gauss-lengend公式求pi,构成不同频率的调制信号,关于神经网络控制,实现典型相关分析,用于建立主成分分析模型。- Complex of three-point Gauss-lengend the Formula pi, Constituting the modulated signals of different frequencies, On neural network control, Achieve canonical correlation analysis, Pr
vrhsbptz
- 多抽样率信号处理,仿真效率很高的,复化三点Gauss-lengend公式求pi,插值与拟合,解方程,数据分析,有较好的参考价值,基于人工神经网络的常用数字信号调制,模式识别中的bayes判别分析算法,可以广泛的应用于数据预测及数据分析。- Multirate signal processing, High simulation efficiency, Complex of three-point Gauss-lengend the Formula pi, Interpolation and fi
neural input 005
- wavelet transform to analyze fault for fault location determining