搜索资源列表
IIR-Filter
- IIR数字滤波器,包括Lowpass、HighPass 和 Passband 获取于网络-IIR digital filter, including Lowpass. Passband HighPass and access to network
potsband
- The routine potsband calculates a bandpass filter corresponding to the standard telephone passband-potsband calculates a bandpas 's filter corresponding to the standard telepho ne passband
BER_Equators
- Adaptive Filter. This scr ipt shows the BER performance of several types of equalizers in a static channel with a null in the passband. The scr ipt constructs and implements a linear equalizer object and a decision feedback equalizer (DFE) object. It
band-pass-filter 线性相位FIR带通滤波器
- 用MATLAB函数fir1设计一个具有如下指标的线性相位FIR带通滤波器:阻带截止频率为0.55pi 和0.85pi,通带截止频率为0.65pi和 0.75pi,最大通带衰减为0.2dB,最小阻带衰减为42dB。分别利用下面的窗函数来设计滤波器:汉宁窗、汉明窗、布莱克曼窗。对于每种情况,给出其冲激响应系数并画出设计的滤波器的幅频响应。-Designed with a MATLAB function with the following indicators fir1 linear phase F
remez.rar
- remez函数设计FIR低通滤波器 设计滤波器,使逼近低通滤波特性 。 要求通带波纹 ,阻带衰减 ,并用最小阶数实现。绘出设计的FIR数字滤波幅频特性曲线。 ,remez function design FIR filter low-pass filter designed to approximate the low-pass filter characteristics. Requirements of passband ripple, stopband attenuation, an
FIR_pinlv[1]
- FIR滤波器, 设计一个线性相位有限冲激响应低通滤波器,使其满足如下指标:通带边界为2kHz,阻带边界为2.5kHz,通带波纹 =0.005,阻带波纹 =0.005,抽样率为10kHz。采用多尔夫-切比雪夫窗进行设计,进行频谱分析。-FIR filter, design a linear phase FIR low-pass filter to meet the following indicators: passband border to 2kHz, stopband border to 2
fir
- 用各种窗函数设计FIR数字滤波器。 分别用矩形窗和Hamming窗设计线性相位FIR低通滤波器。要求通带截止频率,单位脉冲响应h(n)的长度N=21,绘出h(n)及其幅频响应特性曲线。 -Window function with a variety of FIR digital filter design. Were rectangular window and Hamming window design of linear phase FIR low-pass filter. Req
filter_p300k_s600k_IIR_butter
- 通带频率300K,阻带频率600K的butter IIR滤波器设计-Passband frequency of 300K, the 600K stop-band frequency butter IIR filter design
filter_p300k_s600k_FIR_Kaiser
- 通带300K,阻带600K,用Kaiser窗函数的FIR滤波器设计-Passband 300K, stopband 600K, using Kaiser window function of the FIR filter design
exp3[1]
- 利用窗函数设计FIR滤波器,2、 设计一个线性相位有限冲激响应低通滤波器,使其满足如下指标:通带边界为2kHz,阻带边界为2.5kHz,通带波纹 =0.005,阻带波纹 =0.005,抽样率为10kHz。分别采用多尔夫-切比雪夫窗进行设计。-Using window function design FIR filter, 2, design a linear phase finite impulse response low-pass filter to meet the following i
fir5k
- 通带为4500到5500的带通fir的VHDL程序,经实践检验可用-Passband for the 4500-5500 bandpass fir of VHDL procedures, can be used by the practice
45665997lmsbeamforming
- 基于余弦调制多相滤波器的设计,该滤波器的通带窄,阻带衰减高,适用于子信道数为偶数的情况 -Based on cosine modulated polyphase filter design, the filter passband narrow, high stopband attenuation, the number of subchannels for the case of even-numbered
main
- DMT调制,就是把整个通信信道在频域上划分很多子信道,在每个子信道上仍然采用QAM或类似的带通信号进行传输。其中QAM的通带中心频率应该与相应的子信道的中心频率一致。-DMT modulation, that is, the entire communication channel in the frequency domain divided on a lot of channel in each channel is still used on QAM or similar bandpass
aliasingfilter
- 1)设计Butterworth型音频抗混叠滤波器; 2)参数: 下通带频率300Hz;上通带频率3400Hz; 下阻带频率280Hz;上阻带频率3600Hz; 通带最大衰减0.3dB; 阻带最小衰减40dB; 3)采用一低通滤波器和一高通滤波器级联; 4)分别确定LPF和HPF的性能指标; 5)求出两滤波器的系统函数和频率响应,并画出其幅频特性曲线; 6)求整个滤波器的系统函数和频率响应,并画出其幅频特性曲线。-1) the design of Butterw
filterbank8
- 8 通道双正交余弦调制滤波器组实现,滤波器的采样频率为 Fs:20000Hz 设计的低通原型的通带频率为625Hz 阻带衰减80db,滤波器的系数长度为512-8-channel biorthogonal cosine-modulated filter banks to achieve, filter sampling frequency Fs: 20000Hz designed a prototype low-pass frequency of 625Hz passband stopband
MATLABchebhigh2cheblow1
- 自己做的: (一)用双线性变换法设计并用实验系统实现一个三阶的契比雪夫Ⅰ型低通数字滤波器,其采样频率Fs =8KHz,1DB通带边界频率为fp=2KHz。 (二)用双线性变换法设计并用实验系统实现一个三阶的契比雪夫Ⅱ型高通数字滤波器,其采样频率Fs =16KHz,阻带边界频率为fst =4KHz,As=20dB。 -(A) design using the bilinear transformation method and the experimental system of a
QPSK_TX_IQ_RX_REV1
- M-file models a QPSK RXTX at passband using a correlation receiver and low pass filters. This m-file is a revision of QPSK TXRX SYSTEM ANALYSIS published earlier.
modulation
- Plot π/4-DQPSK passband waveform.ASK,FSK,MSK waveform
passband-singnal
- plot passband singnal on PAM (ASK), PSK, and QAM signals
Amplitude Modulation (Baseband, Passband)
- A key consequence of the usual double-sideband amplitude modulation (AM) is that the range of frequencies the signal spans (its spectral bandwidth) is doubled. Thus, the RF bandwidth of a signal (measured from the lowest frequency as opposed to 0 Hz)