当前位置:
首页 资源下载
搜索资源 - pattern recognition SVM
搜索资源列表
-
0下载:
SVM分类器,用于对多维采样点进行分类。可根据类别数修改分类器,我们的模式识别作业。-SVM classifier, multi-dimensional sampling points used for classification. Can be modified according to the number of classification categories, and our pattern recognition operation.
-
-
0下载:
模式识别中的入侵检测算法1,不错的内容啦-pattern recognition of an intrusion detection algorithm, as well--
-
-
0下载:
这是一个很好的支持向量机工具箱,它可用于模式识别,图像识别,文字识别,语音识别和手写体识别等领域。-This is a very good support vector machine toolbox, it can be used for pattern recognition, image recognition, text recognition, speech recognition and handwriting recognition and other fields.
-
-
0下载:
MATLAB中应用支持向量肌(SVN)神经网络对模式识别处理-MATLAB Application of Support Vector muscle (SVN) neural network for pattern recognition processing
-
-
0下载:
这是在模式识别中常用的一个分类器,不过这是一个线性2分类问题,对于多分类问题,可以直接转化~-This is commonly used in pattern recognition, a classifier, but this is a linear 2 classification for multi-classification problems, can be directly translated into
-
-
0下载:
模式识别基本方法matlab源代码,包括最小二乘法、SVM、神经网络、1_k近邻法、剪辑法、特征选择和特征变换。-Basic method of pattern recognition matlab source code, including the least squares method, SVM, neural network, 1_k neighbor method, editing method, feature selection and feature transformatio
-
-
0下载:
选用支持向量机作为区分文本与非文本的分类器,支持向量机是在统计学习理论基础上发展起来的新一代学习算法,它在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势。-Use support vector machine as the distinction between text and non-text classifier, support vector machine is in statistical learning theory developed on the basis of
-
-
0下载:
利用vc编写的支持向量机分类问题的smo源代码,参考Vapnik的文章写的,主要用途是分类.-This is the complete SMO code in SVM for pattern recognition.
-
-
1下载:
模式识别中常用的算法,有感知机算法,支撑矢量机算法和LS算法,并附有实验报告,源程序!-Commonly used pattern recognition algorithms, has perceptron algorithm, support vector machine algorithm and the LS algorithm, along with lab reports, source code!
-
-
0下载:
LIBSVM的JAVA版源代码,LIBSVM是一个简单、易于使用和快速有效的SVM模式识别与回归的软件包-LIBSVM the JAVA version of the source code, LIBSVM is a simple, easy to use and fast and efficient SVM pattern recognition and regression of the package
-
-
0下载:
支持向量机的研究现已成为机器学习领域中的研究热点,其理论基础是Vapnik[3]等提出的统计学习理论。统计学习理论采用结构风险最小化准则,在最小化样本点误差的同时,缩小模型泛化误差的上界,即最小化模型的结构风险,从而提高了模型的泛化能力,这一优点在小样本学习中更为突出。SVM理论正是在这一基础上发展而来的,经过十几年的研究和发展,已开始逐步应用于一些领域。在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,已经在模式识别、函数逼近和概率密度估计等方面取得了良好的效果。- Support
-
-
0下载:
支撑向量机它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。-Support vector machine to solve it in a small sample, nonlinear and high dimensional pattern recognition performance of the many unique advantages, and to promote the use of the function fitt
-
-
0下载:
模式识别与智能计算的一个基于matlab运行的识别分类软件,聚集了模糊聚类,SVM,神经网络等各种流行的分类算法于一体,便于比较测试数据在不同分类算法下的分类效果-Pattern Recognition and Intelligent Identification and Classification of the calculation to run a matlab software, gathered a variety of popular fuzzy clustering, SVM,
-
-
0下载:
有关模式识别的工具箱的使用,在c开发环境下,有关模式识别的一些算法,也可以用于SVM等算法功能实现-The pattern recognition toolbox use, in c development environment, the pattern recognition of some of the algorithm, can also be used for SVM) functions
-
-
1下载:
自动化学院模式识别课件,SVM算法,几何分类器专题,智能模式识别-Courseware automation institute of pattern recognition, the SVM algorithm, geometrical classifier project, intelligent pattern recognition
-
-
0下载:
模式识别相关文章,包括SVM与BP神经网络的相关识别研究与进展-Pattern recognition related articles, including related research and development of SVM Recognition and BP neural network
-
-
3下载:
将支持向量机(SVM)用于模式识别,解决二分类问题,程序中包含训练集和测试集。(The support vector machine (SVM) is used for pattern recognition to solve the dichotomy problem, which includes training set and test set.)
-
-
0下载:
支持向量机模式识别教程
教程首先介绍了VC维和结构风险最小化的概念。然后,我们描述线性可支持向量机(SVM)的可分离和不可分离的数据,通过一个不平凡的例子详细。我们描述了一个机械类比,并讨论当SVM解决方案是唯一的,当它们是全球性的。我们描述了如何实现支持向量机训练,并详细讨论了用于构造数据非线性的SVM解决方案的核心映射技术。(A Tutorial on Support Vector Machines for Pattern Recognition)
-
-
0下载:
SVM(Support Vector Machine)指的是支持向量机,是常见的一种判别方法。在机器学习领域,是一个有监督的学习模型,通常用来进行模式识别、分类以及回归分析。(It is a common discriminant method. In machine learning, it is a supervised learning model, usually used for pattern recognition, classification and regression an
-
-
0下载:
pattern recognition using fractal lacunarity and svm
-