当前位置:
首页 资源下载
搜索资源 - pixel histogram in matlab
搜索资源列表
-
1下载:
此程序为基本的图像直方图处理,图像像素的填充处理及像素的平移处理,经过调试可以直接用-This program for basic image histogram processing, image processing and pixel fill-pixel translational processing, through commissioning can be directly used
-
-
1下载:
多种基于内容的视频检索镜头分割算法matlab程序,主要是检测突变,有基于直方图的方法,基于X2直方图的方法,基于像素的方法以及基于边缘轮廓法对比!对于这一领域的研究具有很好的入门作用!也是本人毕业论文所写的!视频文件建议先分离掉声音,仅保留图像系列,文件须为mpg!-A variety of content-based video retrieval lens matlab segmentation procedures, the major mutations are detected, t
-
-
0下载:
一些常用的图像处理cpp和对应的matlab接口 是非常常用的一些代码-Quick list of the source included:
imhist_thresh.cpp: Generate histogram from data,# of bins based on unique values.
imsmarthist_thresh.cpp: equalize data based on histogram
imsmartstd_thresh.cpp: equal
-
-
0下载:
kin Pixel Likelihoods and Skin Detection
--- --- --- --- --- --- --- -----
This Matlab code was developed for skin pixel detection in general imagery.
Non-parametric histogram-based models were trained using manually annotated
skin and
-
-
0下载:
本程序计算局部窗口的累积直方图,可用于驱动水平集和纹理分割- in this test program, we calculate the cumulative histogram in a local
window centered at each pixel,this local cumulative histogram can be
used to drive the level set for image and texture segmentation.
-
-
0下载:
灰度直方图是灰度级的函数,描述的是图像中具有该灰度级的像素的个数。它是多种空间域处理技术的基础。直方图操作能够有效用于图像增强;提供有用的图像统计资料,其在软件中易于计算,适用于商用硬件设备。直方图均衡化是通过对原图像进行某种变换,使原图像的灰度直方图修正为均匀分布的直方图的一种方法。图像灰度 直方图均衡化使得图像的灰度分布趋向均匀,图像所占有的像素灰度间距拉开,加大了图像反差,改善了视觉效果,达到增强目的。MATLAB是数字图像处理的常用工具,应用MATLAB的各种函数能够对数字图像进行各种处
-
-
0下载:
This Matlab code was developed for skin pixel detection in general imagery.
Non-parametric histogram-based models were trained using manually annotated
skin and non-skin pixels. A total of 14,985,845 skin pixels and 304,844,751
non-skin pixels
-
-
0下载:
This Matlab code was developed for skin pixel detection in general imagery.
Non-parametric histogram-based models were trained using manually annotated
skin and non-skin pixels. A total of 14,985,845 skin pixels and 304,844,751
non-skin pixe
-
-
0下载:
This Matlab code was developed for skin pixel detection in general imagery.
Non-parametric histogram-based models were trained using manually annotated
skin and non-skin pixels. A total of 14,985,845 skin pixels and 304,844,751
non-skin pixe
-