搜索资源列表
粒子群优化算法C
- 同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域-comparison with the genetic algorithm, the advantages of PSO is simple and easy to achieve without many parameters need to be adjusted. Now it has been widely used function op
差别算法matlab源码
- 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation).源于对鸟群捕食的行为研究 PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随最优的粒子进行搜索。详细的步骤以后的章节介绍 同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应
PSOtoolbox.rar
- 微粒群算法[PSO ] 是由Kennedy 和Eberhart等于1995 年开发的一种演化计算技术, 来源于对鸟群捕食过程的模拟。PSO同遗传算法类似,是一种基于叠代的优化工具,但与遗传算法使用遗传操作子进行优化不同,利用群体中各个体之间的“协作”与“竞争”关系,根据自身及其竞争者的飞行经验,调整自己的行为。同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域。,Particle Swarm Opt
FNN_PSO
- This M-file is about using Particle Swarm Algorithm (PSO) to train a Fuzzy Neural Network.
FNN
- 模糊神经网络matlib实现,希望对大家有用!-Fuzzy neural network matlib realize the hope for all of us!
PSO_Java
- 同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域,基于Java语言实现。-Compared with the genetic algorithm, PSO has the advantage is simple and easy and there is no need to adjust many parameters. Has been widely applied to function o
pso
- PSO算法简单、易实现且参数较少,现已被应用于函数优化、神经网络训练、模糊系统控制以及其它遗传算法的应用领域-PSO algorithm is simple, easy to implement and less parameters, have been applied to function optimization, neural network training, fuzzy system control and other applications of genetic algorit
Particle-algorithm
- 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。源于对鸟群捕食的行为研究。 PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随最优的粒子进行搜索。 同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练
30-case-studies
- MATLAB神经网络30个案例分析__读者调用案例的时候,只要把案例中的数据换成自己需要处理的数据,即可实现自己想要的网络。该书共有30个MATLAB神经网络的案例(含可运行程序),包括BP、RBF、SVM、SOM、Hopfield、LVQ、Elman、小波等神经网络;还包含PSO(粒子群)、灰色神经网络、模糊网络、概率神经网络、遗传算法优化等内容。-30 case studies of the MATLAB Neural Network __ readers call the case, as
Takamoli
- pso for train fuzzy neural network PSO F-pso for train fuzzy neural network PSO FNN
yichuansuanfa
- 遗传算法优化BP神经网络、改进的模糊C-均值聚类、遗传算法(粒子群算法、人工鱼群算法等)的投影寻踪模型等遗传算法的简单集合。-Genetic algorithm to optimize the BP neural network, an improved fuzzy C- average clustering and genetic algorithm,(particle swarm optimization (pso), artificial fish algorithm, etc.) of
MATLAB-network
- MATLAB 神经网络源代码,包括BP网络、RBF网络、模糊神经网络、小波神经网络、PSO群优化等共43个网络源代码,并有实际案例-MATLAB neural network source code, including BP network, RBF network, fuzzy neural network, wavelet neural network, PSO Swarm Optimization, a total of 43 network source code, and there
pso_pid
- PID控制器的性能取决于Kp、Ki、Kd这3个参数是否合理,因此,优化PID控制器参数具有重要意义。目前,PID控制器参数主要是人工调整,这种方法不仅费时,而且不能保证获得最佳的性能。PSO已经广泛应用于函数优化、神经网络训练、模式分类、模糊系统控制以及其它应用领域,本案例将使用PSO进行PID控制器参数的优化设计。-Performance of PID controller depends on the Kp, Ki, Kd these three parameters are reasona
Evolutionary-ANFIS-Training
- 用MATLAB实现自适应神经模糊推理系统(ANFIS)结构训练。代码中,首先创建一个初始原ANFIS结构,然后采用遗传算法(GA)、粒子群优化(PSO)来训练ANFIS。此进化训练算法可用于解决非线性回归函数逼近问题。-Implementation of adaptive neural fuzzy inference system (ANFIS) based on MATLAB. Code, the first to create an initial original ANFIS struct
VartiryPSO
- 粒子群优化算法的基本思想是通过群体中个体之间的协作和信息共享来寻找最优解. PSO的优势在于简单容易实现并且没有许多参数的调节。目前已被广泛应用于函数优化、神经网络训练、模糊系统控制以及其他遗传算法的应用领域。-The basic idea of Particle Swarm Optimization (PSO) is to find the optimal solution by cooperating and sharing information among individuals.
PID
- PID控制器参数主要是人工调整,这种方法不仅费时,而且不能保证获得最佳的性能。PSO已经广泛应用于函数优化、神经网络训练、模式分类、模糊系统控制以及其它应用领域,本案例将使用PSO进行PID控制器参数的优化设计。-The main parameters of PID controller are manual adjustment. This method is not only time-consuming, but also can not guarantee the best perfor
MATAB神经网络30个案例分析
- 该PDF共有30个MATLAB神经网络的案例,包括BP、RBF、SVM、SOM、Hopfield、LVQ、Elman、小波等神经网络;还包含PSO(粒子群)、灰色神经网络、模糊网络、概率神经网络、遗传算法优化等内容。本PDF作为本科毕业设计、研究生项日设计、博士低年级课题设计参考书籍,同时对广大科研人员也有很高的参考价值。(The PDF has a total of 30 MATLAB in the case of neural networks, including BP, RBF, SVM
PSO
- 粒子群优化算法(PSO:Particle swarm optimization) 是一种进化计算技术(evolutionary computation)。 源于对鸟群捕食的行为研究。粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解. PSO的优势:在于简单容易实现并且没有许多参数的调节。目前已被广泛应用于函数优化、神经网络训练、模糊系统控制以及其他遗传算法的应用领域。(The particle swarm optimization (PSO:Part
粒子群优化算法
- 粒子群优化(PSO)是一种进化计算技术(进化计算)。 捕食鸟行为的研究。粒子群算法(PSO)的基本思想是通过群体中个体之间的协作和信息共享找到最优解。 粒子群优化算法的优点是它简单且易于实现,没有多个参数。目前,它已广泛应用于函数优化、神经网络训练、模糊系统控制等遗传算法中。(The particle swarm optimization (PSO:Particle swarm optimization) is an evolutionary computing technology (Ev
85190844wedgelet
- 小波等神经网络,还包含PSO(粒子群)、灰色神经网络、模糊网络、概率神经网络、遗传算法优化等内容。(wavelet neural networks, etc. also contains the PSO (PSO), gray neural networks, fuzzy networks, probabilistic neural networks, genetic algorithm optimization and so on.)