当前位置:
首页 资源下载
搜索资源 - q learning in matlab
搜索资源列表
-
0下载:
Simulink 控制VR环境中的小车。小车有5个距离传感器,能够慢慢学会避开墙壁和障碍物。小车采用加强学习(Q learning),采用神经网络对Q函数逼近。由于使用了模拟退火,小车在开始的时候会经常撞击障碍物,10次后基本就不会再撞了。
小车的外观模型使用了"w198406141"在本论坛的虚拟现实区发布的VR模型。-VR environment Simulink control car. There are 5 car distance sensor, can gradually le
-
-
0下载:
matlab环境下的Q学习算法代码,从收费网站下的,可以运行。-reinforcement learning code in MATLAB
-
-
1下载:
一个很好的Q学习源码,对于学习强化学习有很大的作用。-Q-learning a good source for learning reinforcement learning has a significant role.
-
-
0下载:
RL在求解标准小车爬山问题时的matlab程序,采用算法为经典的Q学习算法-RL matlab program in solving mountaincar problem, the algorithm is the classic Q-learning algorithm
-
-
1下载:
q学习算法,在MATLAB中实现,本人已运行成功,希望有帮助-q learning algorithm implemented in MATLAB, I have run successfully, the hope of helping
-
-
1下载:
An Example for Reinforcement Learning using Q-learning with epsilon-greedy exploration(The deterministic cleaning-robot MDP a cleaning robot has to collect a used can also has to recharge its batteries. the state describes the position of the robot a
-
-
0下载:
ARIMA模型全称为自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA),是由博克思(Box)和詹金斯(Jenkins)于70年代初提出一著名时间序列预测方法[1] ,所以又称为box-jenkins模型、博克思-詹金斯法。其中ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归, p为自回归项; MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数。所谓ARIMA模型,是指将非平稳
-
-
0下载:
Reinforcement learning, a Q learning algorithm, implementation on a robot that tryies to solve randomly created maze and reach the goal. Note that you can run .m files both on Matlab and Octave.
-
-
0下载:
在动态环境中使用Q学习优化算法进行优化,仿真软件为Matlab(Q-learning optimization algorithm is used to optimize in dynamic environment. The simulation software is MATLAB)
-