当前位置:
首页 资源下载
搜索资源 - scene classification
搜索资源列表
-
0下载:
運動識別
在摄像机监视的场景范围内,对出现的运动目标进行检测、分类及轨迹追踪,可应用于各种监控目的,如周界警戒及入侵检测、绊线检测、非法停车车辆检测等。-Movement Recognition ' scene in the scope of surveillance cameras, the emergence of the moving target detection, classification and tracking, monitoring can be applied
-
-
1下载:
模式识别中,多标签标记中的经典代码,主要用于场景分类,目标识别,结合svm和boost算法对自然场景进行分类,真的很不错,看看吧-Pattern Recognition, multi-tagged in the classic code, mainly used for scene classification, object recognition, combined with svm and boost the natural scene classification algorithm,
-
-
0下载:
Biofeature 特征提取可用于场景分类-Biofeature feature extraction can be used for scene classification
-
-
1下载:
是一种纹理描述算子用于快速提取图像的纹理特征,应用于医学图像检索,场景分类等.-Is a texture descr iption operator for rapid extraction of texture features, used in medical image retrieval, scene classification.
-
-
0下载:
用来对图像进行分类。Source code for Towards Total Scene Understanding: Classification, Annotation and Segmentation in an Automatic Framework. Computer Vision and Pattern Recognition (CVPR) 2009,Li-Jia Li, Richard Socher and Li Fei-Fei. -Source code for Towards
-
-
0下载:
CRF learning and inference algorithm for scene labeling and classification
-
-
0下载:
Biologically Inspired Features for Scene
Classification in Video Surveillance
-
-
1下载:
整理图像特征点提取和分类的程序(可以作为场景分类的前期工作),自己调试过能运行,特征点提取用的SIFT算法,使用K-means聚类算法,将得到的20个聚类中心写入txt文本中-Finishing the image feature point extraction and classification procedures (which can be as the preparatory work of the scene classification), their own debugging
-
-
0下载:
用于场景分类的代码,特征是事先提取好的,用PHOG特征-For scene classification code, characterized in that prior extraction good PHOG characterized
-
-
0下载:
有关视频场景分类的几篇文章,都是比较经典的文章,适合入门者。-For articles classified video scenes are more classic article, suitable for beginners.
-
-
0下载:
提供了三类场景“bedroom”、“CALsuburb”、“industrial”的样本特征集以及原始图像,分别用线性分类器、树状分类器、SVM分类器以及AdaBoost分类器对其进行区分。其中AdaBoost分类器有部分内容调用了Vezhnevets Alexander编写的源码-Provides three types of scenes " bedroom" , " CALsuburb" , " industrial" sample fea
-
0下载:
对场景分类和语义特征稀疏化的高层图像表示-Object Bank: A High-Level Image Representation for Scene
Classification & Semantic Feature Sparsification
-
-
0下载:
图像场景分类的bow模型opencv源代码,采用k-means聚类构造单词,采用支持向量机的svm分类器。-Image scene classification bow model opencv source code, using k-means clustering structure of words, using support vector machine svm classifier.
-
-
1下载:
图像场景分类中视觉词包分类的应用与操作代码-Review of the bag-of-visual-words models in image scene classification
-
-
0下载:
Computer Vision Scene Classification scr ipt
-
-
0下载:
自然场景分类与目标识别关键技术研究_周莉
通用视觉目标识别的关键技术研究_黄双萍0000.caj0000000于机器学习的物体识别_刘光灿.caj-Key technical nature scene classification and object recognition _ Zhou Li
Key Technology Research on General visual object recognition _ Huang Shuangping 0000.caj0000000
-
-
0下载:
基于词袋的场景分类,分类器采用SVM和最近邻,需要vlfeat和图片见http://cs.brown.edu/courses/csci1430/proj3/-Based on word bag scene classification, SVM classifier using the nearest neighbor and need vlfeat and pictures see http://cs.brown.edu/courses/csci1430/proj3/
-
-
0下载:
图像特征提取,用于提取高层次语义特征,用于图像场景的分类,一种新的特征表示方式-A High-Level Image Representation for Scene
Classification & Semantic Feature Sparsification
-
-
0下载:
ML-KNN,这是来自传统的K-近邻(KNN)算法。详细地,为每一个看不见的实例中,首先确定了训练集中的k近邻。之后,基于从标签集获得的统计信息。这些相邻的实例,即属于每个可能类的相邻实例的数量,最大后验(MAP)原理。用于确定不可见实例的标签集。三种不同现实世界中多标签学习问题的实验研究,即酵母基因功能分析、自然场景分类和网页自动分类,表明ML-KNN实现了卓越的性能(ML-KNN which is derived from the traditional K-nearest neighbo
-
-
0下载:
2013 声场景挑战赛 适合作为环境声音分类参考,内含代码。(scene-classification-aasp-2013-master)
-