搜索资源列表
susan
- 本代码是对susan算子的实现,susan可以提取图像的边缘和角点,对噪声不敏感,且速度快,目前主要是用于提取角点
susan
- susan算子的相关资料 包括文献及相关代码
susan
- SUSAN算子是角点检测算法中的典型,这是VC环境下的源代码。
susan
- susan算子提取算法,提供对图像特征准确,鲁棒,快速的提取,并采用高效代码实现-extraction algorithm, the image features provide accurate, robust, fast extraction, and the introduction of efficient implementation of the code
susan算子边缘检测
- 用SUSAN算子进行图像的边缘检测
suan算子
- 实现了susan算子
基于Susan算子和光流法的三维点云模型重建
- 基于Susan算子和光流法的三维点云模型重建
edge-detect-algorithm-comparis
- 边缘检测算法的比较,有susan算子,log算子,prewitt算子,Comparison of edge detection algorithm, there is susan operator, log operator, prewitt operator
susan
- susan算子的源码一老外写的,貌似很好-susan corner detection
SUSAN
- SUSAN算子检测图像边缘和角点,可以自己定义不同的检测模板,实现不同功能的角点检测。-SUSAN operator detect image edges and corners, can define a different template to different functions of the corner detection.
susan
- 这是一个SUSAN算子边缘检测程序.平台:MATLAB7.0.-This is a SUSAN edge detection operator procedures. Platform: MATLAB7.0.
susan-edge-detect
- 使用sobel算子对图片的边缘进行检测.本算法主要基于sobel算子,进行了一定的改进-based on sobel,detect the edge of picture
susan
- 用MATLAB实现的SUSAN算子,用于图像的边缘检测-susan detect edge!
Susan
- Susan算子 用于图像边缘提取。 和图像角点提取-Susan operator for image edge extraction. And Image Corner Detection
susan
- susan算子 基于边缘的图像分割 This function uses the SUSAN algorithm to find edges within an image-susan operator on the edge of the image segmentation This function uses the SUSAN algorithm to find edges within an image
MYSUSAN
- 利用susan算子自动标定给定图像的边缘点,并且在图像上面标出.-Susan operator using automatic calibration for a given image edge points, and marked in the image above.
SUSAN
- susan算子进行边缘检测的简单实例,可以直接使用进行图像的边缘检测-a simple example for susan
susan
- susan算子进行角点检测,识别图像边缘曲率较大的地方并且标志出来-susan operator for corner detection, edge curvature identify and mark out a larger place
susan
- 关于Susan算子的图形图像处理过程的Matlab的编程-Susan operator on the graphic image processing with Matlab programming
Susan
- SUSAN算子提取特征点分布合理,不需要对图像求导,所以又较强的抗噪声能力-SUSAN operator to extract characteristic points distribution is reasonable, does not require image derivation, it is also strong resistance to noise