搜索资源列表
LS-SVM
- 基于LS-SVM的入侵检测模型与实时测试平台研究-LS-SVM based intrusion detection model and real-time test platform for research
svm-EM
- SVM(支持向量机)和EM(最大熵)文本分类算法,压缩包中包括了测试文本(环境类和计算机类),词典,停用词表等。-SVM (support vector machine) and EM (maximum entropy) text classification algorithm, compressed package includes test text (environmental and computer), dictionary, thesaurus, such as disabled.
svm
- 用MATLAB编写的分类回归程序,通用。并给出了实例对分类效果进行检验。-MATLAB prepared using classification and regression procedures, General. And give examples of the classification results from such a test.
SVM
- 有基于 matlav的svm软件工具,感觉挺好用的。里面有很多实例,稍加修改就可以使用。例如三分类问题: 1、输入三类数据xapp yapp 2、选择多类分类方法(一对多或一对一或m-svm) 3、设置参数 4、调用训练函数得到向量机参数 5、输入测试数据,得到预期结果。 -There is matlav based on the SVM-based software tools, I feel pretty useless. Inside there is a lot
SVM
- 用C语言自己编写基于特定训练数据和测试数据的SVM程序,并用AUC对其评估-I have written using C language based on the specific training data and test data of the SVM procedure, and their assessment of AUC
Test Class By SVM
- 支持向量机实现的文本分类程序,过程如下,首先使用分词工具分词,这里使用的是计算所的分词工具,从而保证分词是最优秀的,接下来使用国际效率最高的文本IFIDF向量生成工具生成文本相量,最后使用台湾林智恒的效率最高的SVM实现软件包libsvm实现训练和分类,可以这么说,该文本分类是同类中效率最高最准确的-text classfication source code use 3 technology.words sementation,vector gerneration,and libsvm too
SVM-KM
- KNN k nearest neighbours, this is a method to design which cluster the test sample belong to using the KNN algorithm,which is a matlab code worth using and download.-k nearest neighbours, this is a method to design which cluster the test sample belon
SVM-Matlab
- matlab写的SVM分类,tranning和test分开,可直接使用。-matlab write SVM classification, tranning and test separately, can be used directly.
SVM
- SVM工具箱,做分类和回归用很好。6.5下测试通过。-SVM Toolbox, to do with a good classification and regression. 6.5 under test.
Based-on-SVM-speaker-recognition
- 基于SVM的文本无关说话人识别算法研究,本文在最后用Matlab程序实现了一个基于支持向量机的说话人识别系统试验平台。并根据对参试者进行的大量身份测试试验,总结系统的各方面性能和分析存在的问题,为进一步研究提供了方向和宝贵的经验。 -SVM-based text independent speaker recognition algorithm, the paper used in the final implementation of a Matlab program based on
Matlab-svm-BP-compare
- 支持向量机和BP神经网络虽然都可以用来做非线性回归,但它们所基于的理论基础不同,回归的机理也不相同。支持向量机基于结构风险最小化理论,普遍认为其泛化能力要比神经网络的强。为了验证这种观点,本文编写了支持向量机非线性回归的通用Matlab程序和基于神经网络工具箱的BP神经网络仿真模块,仿真结果证实,支持向量机做非线性回归不仅泛化能力强于BP网络,而且能避免神经网络的固有缺陷——训练结果不稳定。-SVM and BP neural networks, although non-linear regr
SVM-test
- 这是SVM+水平竖直直方图特征的车牌字符识别。包括汉字、字母、数字的识别。-This is SVM+ horizontal vertical histogram license plate character recognition. Including Chinese characters, letters, numerals.
svm-test-master
- svm by matlab for classification problem
SVM
- 一个MATLAB语言写的SVM算法测试例,便于理解SVM二分类方法的实际含义(A MATLAB language written SVM algorithm test case, easy to understand the SVM two classification method of practical significance)
SVM算法二分类
- 将支持向量机(SVM)用于模式识别,解决二分类问题,程序中包含训练集和测试集。(The support vector machine (SVM) is used for pattern recognition to solve the dichotomy problem, which includes training set and test set.)
SVM测试程序
- 一个测试支持向量机SVM分类的简单小程序,好像从别人那整的(A test of support vector machine classification SVM simple small program)
SVM
- 训练集:trainset(); 分别取bedroom(1:5,:)和forse(1:5,:)作为训练集; 测试集:testset(); 分别取bedroom(6:10,:)和forse(6:10,:)作为测试集; 标签集:label(); 取bedroom的数据为正类标签为1;forse的数据为负类标签为-1.(Training set: trainset (); take bedroom (1:5,) and forse (1:5,:) as the training set; Tes
SVM_RF
- svm algortihm test code
SVM
- 该算法用Visual Studio编写 ,用于实现对样本的训练以及测试,并可以转换成matlab语言,直接调用子程序(The algorithm is written in Visual Studio, which is used to train and test the sample, and can be converted into a matlab language and directly invoked the subroutine.)
GBDT+SVM
- 使用机器学习中的SVM,GBDT算法构建分类模型,做分类预测。并且对测试结果评估,模型保存。(Use SVM and GBDT algorithm in machine learning to build classification model and do classification prediction. And evaluate the test results and save the model.)