搜索资源列表
transductive-SVM
- 对直推式支持向量机的较为经典的介绍,包含一些直推式学习的思想,算法-Direct Push on Support Vector Machine, introduced a more classic, contains a number of Direct Push the idea of learning, algorithm
svmlight
- Joachims的SVM-light工具包 里面含有 两个.exe文件svm_classify.exe svm_learn.exe 可以实现Transductive SVM用Anton s Matlab interface to SVM light 使用会更方便-Joachims s SVM-light kit which contains two. Exe files svm_classify.exe svm_learn.exe can Transductive SVM with Anton
svm_toolbox
- svm matlab工具箱,经过测试,非常好用!有界面。-svm matlab toolbox, tested, very good! Interface there is.
cccp
- 进行半监督转倒式训练 通过半监督学习进行分类-for semi-supervised maching learning,the paper is 《Large Scale Transductive SVMs》
SemiL
- 利用基于图的分类方法, 半监督学习 ,分类软件。-SemiL is efficient software for solving large scale semi-supervised learning or transductive inference problems using graph based approaches.
step03
- Transductive Support Vector Classification for RNA Related Biological Abstracts
TRAM
- TRAM程序使用MATLAB代码编写实现直推式多标记学习算法。里面包括可读文件和实例。-This package includes the MATLAB codes for transductive multi-label learning algorithm. A Readme file and an example file are included in the package.
svmlightToolbox
- SVM light 工具箱 包含window版本和matlab版本 由美国cornell大学的教授Thorsten Joachims部署 执行SVM二分类 速度明显快于libsvm 下载文件中包含 1.例子(inductive SVM 和 transductive SVM) 2.说明文件 3.源程序-SVM light kit (including window version and matlab version)
SGTlight
- 该代码包实现了直推学习算法(transductive learning),该算法基于kNN的一个扩展。优点是不需要任何启发式诱导,可以防止不收敛或者局部收敛-We present a new method for transductive learning, which can be seen as a transductive version of the k nearest-neighbor classifier.
Maximum-Entropy
- In the distributed processing, where common labeled data may be not available for designing classifier ensemble, however, an ensemble solution is necessary, traditional fixed decision aggregation could not account for class prior mismatch or cl
Hyperspectral-Image-Classification-Through-Bilaye
- Hyperspectral image classification with limited number of labeled pixels is a challenging task. In this paper, we propose a bilayer graph-based learning framework to address this problem. For graph-based classification, how to establish the n
sick
- 迁移学习 领域适应性 机器学习 学习代码(Transfer learning Domain Adaptation Machine Learning Coding study Inductive Learning Transductive Learning)
tsvm
- TSVM直推式支持向量机 TSVM实现直推向量机 设置初始参数 设置核函数类型 将核类型转换为数值参数(transductive-SVM switch to numerical parameter for kernel for RBF kernel change sigma to gamma)