搜索资源列表
ADAPTIVE-IMAGE-FUSION-ALGORITHM
- 针对低可见光图像和红外图像的特点,提出一种基于DT-CWT的自适应图像融合算法.该算法具有好的平移不变性和方向选择性,更适合于人类视觉.先对源图像作双树复小波变换,充分考虑各尺度分解层的系数特征,对 低通子带引入免疫克隆选择,根据统计评价准则定义亲和度函数,自适应获得最优融合权值 对高通子带则根据人类视觉特性定义局部方向对比度,并作为融合准则,突出和增强了各源图像的对比度与细节信息.实验结果表明: 与基于小波的融合结果相比较,本文的融合算法自适应性和鲁棒性更强,较好地保护和显示了源图像中
mutual-information
- 红外和可见光的匹配跟踪在军事、遥感等领域有着广泛的应用。针对灰度和图像特征存在比较大差异的红外和可见光图像,本文采用了最大互信息算法,结合形态学梯度和小波分解。互信息算法优点在于不需要对多模图像灰度间的关系做任何假设,不足之处在于它对图像空间信息的忽略而且计算时间较长。本文互信息结合多结构元的形态学梯度检测的图像边缘,可以使得图像匹配精度提高,还能改善局部极值的问题,再利用小波分解对图像进行压缩降低分辨率,可以减少互信息计算量。最后的实验数据表明在配准过程中互信息的计算速度得到了优化,匹配精度得