DIGITAL DATCOM INPUT QUANTITIES

NAMELIST ASYFLP
Asymmetrical Control Deflection Unit

Variable			p. 62
Name	Dim	Definition	Units
DELTAL	9	deflection angle for left hand plain flap aileron or left	deg
		hand panel all moveable horizontal tail, measured in	
		vertical plane of symmetry	
DELTAR	9	deflection angle for right hand plain flap aileron or right	deg
		hand panel all moveable horizontal tail, measured in	
		vertical plane of symmetry	
DELTAD	9	projected height of deflector, spoiler-slot deflector	-

		c
DELTAS	9	p
		s
XSOC	9	d
		p
HSOC	9	fr

DIGITAL DATCOM INPUT QUANTITIES

NAMELIST Body Geometry Data			
Variable			p. 36
Name	Dim	Definition	Units
NX	-	number of longitudinal body stations at which data is	-
		specified, maximum of 20	
X	20	longitudinal distance measured from arbitrary locn.	length
S	20	cross sectional area	area
P	20	periphery at station x (i)	length
R	20	planform half width	length
ZU	20	z-coordinate at upper body surface	length
		(positive when above centerline)	
ZL	20	z-coordinate at lower body surface	length
		(positive when below centerline)	
BNOSE	-	BNOSE=1 conical nose; BNOSE=2 ogive nose	-
BTAIL	-	BTAIL=1 conical tail; BTAIL=2 ogive tail	-
BLN	-	length of body nose	length
BLA	-	length of cylindrical afterbody segment	length
DS	-	nose bluntness diameter, zero for sharp nosebodies	length
ITYPE	-	=1 straight wing, no area rule	-
		=2 swept wing, no area rule	
		=3 swept wing, area rule	
		set to 2 if not input	
METHOD	-	=1, use existing methods	-
		=2, use Jorgensen method	
ELLIP	-	*** NOT DEFINED IN DOCUMENT ***	-

DIGITAL DATCOM INPUT QUANTITIES

DIGITAL DATCOM INPUT QUANTITIES

NAMELIST EXPR			
Experimental data input			
Variable			p.45
Name	Dim	Definition	Units
CDB	20		
CLB	20		
CMB	20		
CLAB	20		
CMAB	20		
CDW	20		
CLW	20		
CMW	20		
CLAW	20		
CMAW	20		
CDH	20		
CLH	20		
CMH	20		
CLAH	20		
CMAH	20		
CDWB	20		
CLWB	20		
CMWB	20		
CLAWB	20		
CMAWB	20		
QOQINF	20		
EPSLON	20		
DEODA	20		
CDV	20		
ALPOW	-		
ALPLW	-		
ALPOH	-		
ALPLH	-		
ACLMW	-		
CLMW	-		
ACLMH	-		
CLMH	-		

DIGITAL DATCOM INPUT QUANTITIES

NAMELIST FLTCON			
Flight Conditions			
Variable			p. 27
Name	Dim	Definition	Units
NMACH	-	number of Mach numbers or velocities to	
		be run, maximum of 20	
MACH	20	values of freestream Mach number	
VINF	20	Values of freestream speed	1/t
NALPHA	-	number of angles of attack to be run,	
		maximum of 20	
ALSCHD	20	values of angle of attack, tabulated	deg
		in ascending order	
RNNUB	20	Reynolds Number per unit length	1/I
NALT	-	Number of atmospheric conditions to be run	
		maximum of 20	
ALT	20	values of geometric altitudes	
PINF	20	values of freestream static pressure	
TINF	20	values of freestream temperature	
HYPERS	-	=TRUE then hypersonic analysis at all Mach	
		numbers greater than 1.4	
STMACH	-	upper limit of Mach numbers for subsonic analysis	
		must not be less than 0.6 and not greater than 0.99	
		STMACH is set to 0.6 if not input	
TSMACH	-	lower limit of Mach numbers for supersonic analysis	
		must be > 1.01 and not greater than 1.4	
		TSMACH is set to 1.4 if not input	
TR	-	drag due to lift transition flag, for regression	
		analysis of wing-body configurations	
		=0.0 for no transition, default	
		$=1.0$ for transition strips or full scale flight	
WT		Vehicle weight	force
GAMMA		Flight path angle	degrees
LOOP		PROGRAM LOOPING CONTROL	
		= 1 vary altitude and Mach number together, default	
		= 2 vary Mach, at fixed altitude	
		=3 vary altitude, at fixed Mach	

DIGITAL DATCOM INPUT QUANTITIES

NAMELISTGRNDEF			
Ground Effect			
Variable			p. 53
Name	Dim	Definition	Units
NGH	-	Number of ground heights to be run	
GRDHT	10	Values of ground heights, ground heights equal	
		altitude of reference plane relative to ground	
NAMELIST HYPEFF			
Flap Control at Hypersonic Speeds			
Variable			p. 67
Name	Dim	Definition	Units
ALITD	-	altitude	length
XHL	-	distance to control hinge line measured from	length
	-	the leading edge	
TWOTI	-	ratio of wall temperature to the free	
		stream static temperature	
CF	-	control chord length	length
LAMNR	-	=.TRUE. if boundary layer at hinge line is laminar	
	-	=.FALSE. if boundary layer at hinge line is not laminar	
HNDLTA	-	number of flap deflection angles (max of 10)	
HDELTA	10	control deflection angle, positive trailing	
	-	edge down	
NAMELIST JETPWR			
Jet Power Parameters			
Variable			p. 51
Name	Dim	Definition	Units
AIETLJ	-	angle of incidence of engine thrust line	deg
NENGSJ	-	number of engines (1 or 2)	-
THSTCJ	-	thrust coefficient	-
JIALOC	-	axial location of jet engine inlet	length
JEVLOC	-	vertical location of jet engine exit	length
JEALOC	-	axial location of jet engine exit	length
JINLTA	-	jet engine inlet area	area
JEANGL	-	jet exit angle	deg
JEVELO	-	jet exit velocity	length/time
AMBTMP	-	ambient temperature	deg
JESTMP	-	jet exit static temperature	deg
JELLOC	-	lateral location of jet engine	length
JETOTP	-	jet exit total pressure	pressure
AMBSTP	-	ambient static pressure	pressure
JERAD	-	radius of jet exit	length

DIGITAL DATCOM INPUT QUANTITIES

NAMELIST LARWBLow Aspect Ratio Wing, Wing-Body In			
Variable			p. 64
Name	Dim	Definition	Units
ZB	-	vertical distance between centroid of base area	I
		and body reference plane	
SREF	-	planform area used as reference area	
DELTEP	-	sharp leading edge parameter	
SFRONT	-	projected frontal area perpendicular to	
		zero normal force reference plane	
AR	-	aspect ratio of surface	
R3LEOB	-	round leading edge parameter	
DELTAL	-	round leading edge parameter	
L	-	length of body used as longitudinal	
		reference length	
SWET	-	wetted area, excluding base area	
PERBAS	-	perimeter of base	
SBASE	-	base area	
HB	-	maximum height of base	
BB	-	maximum span of base, used as	
		lateral reference length	
BLF	-	if TRUE, portions of base are aft of	
		non-lifting surface. FALSE otherwise	
XCG	-	longitudinal distance of CG from nose	
THETAD	-	wing semi-apex angle	
ROUNDN	-	TRUE for rounded nose	
		FALSE for pointed nose	
SBS	-	projected side area of configuration	
SBSLB	-	projected side area of configuration	
		forward of 0.2 length of body	
XCENSB	-	distance from nose of vehicle to centroid	
		of projected side area	
XCENW	-	distance from nose of configuration to	
	-	centroid of plan area	

DIGITAL DATCOM INPUT QUANTITIES

NAMELIST OPTINS			
Options			
Variable			p. 29
Name	Dim	Definition	Units
ROUGFC	-	surface roughness factor, equivalent	
		sand roughness. Default to 0.16 millinches	
		or 0.4E-3 cm	
SREF	-	reference area. Value of the theoretical wing	
		area used by program if not input.	
CBARR	-	longitudinal reference length. Value of	
		theoretical wing mean aerodynamic chord	
		used if not input	
BLREF	-	lateral reference length. Value of wing span	
		used if not input	
NAMELIST PROPWR			
Propellor Power Parameters			
Variable			p. 49
Name	Dim	Definition	Units
AIETLP	-	angle of incidence of engine thrust axis	deg
NENGSP	-	number of engines (1 or 2)	
THSTCP	-	thrust coefficient	
PHALOC	-	axial location of propellor hub	
PHVLOC	-	vertical location of propellor hub	
PRPRAD	-	propellor radius	
ENGFCT	-	empiricaal normal force factor	
BWAPR3	-	blade width at 0.3 propeller radius	
BWAPR6	-	blade width at 0.6 propeller radius	
BWAPR9	-	blade width at 0.9 propeller radius	
NOPBPE	-	number of propeller blades per engine	
BAPR75	-	blade angle at 0.75 propeller radius	
CROT	-	=TRUE for counter rotating propellors	
		=FALSE for non-counter rotating propellors	
YP	-	lateral location of engine	
	-		

DIGITAL DATCOM INPUT QUANTITIES

DIGITAL DATCOM INPUT QUANTITIES

DOBCIN			
DOBCOT			
NAME		SYNTHS	
Synthesis			
Variable			p. 33
Name	Dim	Definition	Units
XCG	-	longitudinal location of CG,	
		(moment reference center)	
ZCG	-	vertical location of CG relative to reference plane	
XW	-	longitudinal location of theoretical wing apex	
ZW	-	vertical location of theoretical wing apex relative	
	-	to reference plane	
ALIW	-	wing root chord incidence angle measured from	
	-	reference plane	
XH	-	longitudinal location of theoretical horizontal	
		tail apex	
ZH	-	vertical location of theoretical horizontal tail	
		apex relative to reference plane	
ALIH	-	horizontal tail root chord incidence angle	
	-	measured from reference plane	
XV	-	longitudinal location of theoretical vertical tail apex	
VERTUP	-	=TRUE if vertical panel is above reference plane	
		=FALSE if vertical panel is below reference plane	
HINAX	-	longitudinal location of horizontal tail hinge axis	
	-		
XVF	-	Iongitudinal location of theoretical vertical fin apex	
SCALE	-	vertical scale factor multiplier to input dimensions	
ZV	-	vertical location of theoretical vertical tail apex	
ZVF	-	vertical location of theoretical vertical fin apex	
YV	-	*** NOT DEFINED IN DOCUMENT ***	
YF	-	*** NOT DEFINED IN DOCUMENT ***	
PHIV	-	*** NOT DEFINED IN DOCUMENT ***	
PHIF	-	*** NOT DEFINED IN DOCUMENT ***	

DIGITAL DATCOM INPUT QUANTITIES

	-		
NAMELIST TRNJET			
Transverse Jet Control Input			
Variable			p. 65
Name	Dim	Definition	Units
NT	-	number of time history values, max of 10	
TIME	10	time history	time
FC	10	time history of control force required to trim	force
ALPHA	10	time history of attitude	deg
LAMNRJ	-	time history of boundary layer, where	
	-	.TRUE. = boundary layer is laminar at jet	
	-	.FALSE. $=$ boundary layer is not laminar at jet	
ME	-	nozzle exit Mach number	
ISP	-	jet vacuum specific impulse	time
SPAN	-	span of nozzle normal to flow direction	length
PHE	-	inclination of nozzle center line relative to	
	-	an axis normal to the surface	
GP	-	specific heat ratio of propellant	
CC	-	nozzle discharge coefficient	
LFP	-	distance of nozzle from plate leading edge	length
NAMELIST TVTPAN			
Twin Vertical Panel Input			
Variable			p. 55
Name	Dim	Definition	Units
BVP		vertical panel span above lifting surface	L
BV	-	vertical panel span	
BDV	-	fuselage depth at quarter-chord of vertical	L
		panel mean aerodynamic chord	
BH	-	distance between vertical panels	L
SV	-	planform area of one vertical panel	A
VPHITE	-	total trailing edge angle of vertical panel	
		airfoil section	DEG
VLP	-	distance parallel to the longitudinal axis between	L
		the CG and the quarter chord point of the MAC	
		of the panel. Positive is aft of the CG.	
ZP	-	distsnce in the z-direction between the CG and	
		the MAC of the panel. Positive for panel above CG.	

DIGITAL DATCOM INPUT QUANTITIES

NAMELISTS WGPLNF,HTPLNF,VTPLNF,VFPLNF

Planform			
Variable		Namelists WGPLNF, ... p. 37	
Name	Dim	Definition	
CHRDTP	-	tip chord	length
SSPNOP	-	semispan, outboard panel	length
SSPNE	-	semispan of exposed panel	length
SSPN	-	semispan theoretical panel from theoretical root chord	length
CHRDBP	-	chord at breakpoint	length
CHRDR	-	root chord	length
SAVSI	-	inboard panel sweep angle	deg
SAVSO	-	outboard panel sweep angle	deg
CHSTAT	-	reference chord station for inboard and outboard	
		panel sweep angles, fraction of chord	
TWISTA	-	twist angle, negative leading edge rotated down	
SSPNDD	-	semispan of outboard panel with dihedral	length
DHDADI	-	dihedral angle of inboard panel	deg
		(if DHDADI=DHDADO, only input DHDADI)	
DHDADO	-	dihedral angle of outboard panel	
TYPE	-	= 1.0 STRAIGHT TAPERED PLANFORM	-
	-	$=2.0$ double delta planform (aspect ratio <3)	
	-	$=3.0$ cranked planform (aspect ratio > 3)	
SHB	-	Portion of fuselage side area that lies between Mach	area
	-	LINES ORIGINATING FROM LEADING AND TRAILING	
	-	OF HORIZONTAL TAIL EXPOSED ROOT CHORD	
	-		
SEXT	-	portion of extended fuselage side area that lies between	area
	-	Mach lines originating from leading and trailing edges	
	-	of horizontal tail exposed root chord	
	-		
RLPH	-	longitudinal distance between CG and centroid of SHB	length
	-	positive aft of CG	
SVWB	-	portion of exposed vertical panel area that lies	area
	-	between Mach lines emanating from leading and	
	-	trailing edges of wing exposed root chord	
SVB	-	area of exposed vertical panel not influenced by wing	area
	-	or horizontal tail	
SVHB	-	portion of exposed vertical panel area that lies between	
	-	Mach lines emanating from leading and trailing edges	
	-	of horizontal tail exposed root chord	

DIGITAL DATCOM INPUT QUANTITIES

NAMELISTS WGSCHR, HTSCHR, VTSCHR, VFSCHR
Section Characteristics

Variable		
Name	Dim	D
TOVC	-	max
		th
DELTAY	-	d
		a
XOVC	-	c
		th
CLI	-	a
ALPHAI	-	a
		d
CLALPA	20	a
		p
CLMAX	20	a
CAMBER	-	c
CM0	-	s
CMO	-	s
XOVCO	-	(
	-	C
LERI	-	a

LERO	-
TOVCO	-

DIGITAL DATCOM INPUT QUANTITIES

