CDN加速镜像 | 设为首页 | 加入收藏夹
当前位置: 首页 会员管理中心 查看会员资料

查看会员资料

用 户 名:z*****

发送消息
  • Email:
    用户隐藏
  • Icq/MSN:
  • 电话号码:
  • Homepage:
  • 会员简介:

最新会员发布资源

  1. SVD

    2下载量:
  2. % 奇异值分解 (sigular value decomposition,SVD) 是另一种正交矩阵分解法;SVD是最可靠的分解法, % 但是它比QR 分解法要花上近十倍的计算时间。[U,S,V]=svd(A),其中U和V代表二个相互正交矩阵, % 而S代表一对角矩阵。 和QR分解法相同者, 原矩阵A不必为正方矩阵。 % 使用SVD分解法的用途是解最小平方误差法和数据压缩。用svd分解法解线性方程组,在Quke2中就用这个来计算图形信息,性能相当的好。在计算线性方程组时,一些不能分
  3. 所属分类:数学计算/工程计算

    • 发布日期:2014-01-16
    • 文件大小:2746
搜珍网 www.dssz.com