CDN加速镜像 | 设为首页 | 加入收藏夹
当前位置: 首页 会员管理中心 查看会员资料

查看会员资料

用 户 名:迪***

发送消息
  • Email:
    用户隐藏
  • Icq/MSN:
  • 电话号码:
  • Homepage:
  • 会员简介:

最新会员发布资源

  1. fisher

    0下载量:
  2. Fisher线性鉴别分析已成为特征抽取的最为有效的方法之一 .但是在高维、小样本情况下如何抽取Fisher最优鉴别特征仍是一个困难的、至今没有彻底解决的问题 .文中引入压缩映射和同构映射的思想 ,从理论上巧妙地解决了高维、奇异情况下最优鉴别矢量集的求解问题 ,而且该方法求解最优鉴别矢量集的全过程只需要在一个低维的变换空间内进行 ,这与传统方法相比极大地降低了计算量 .在此理论基础上 ,进一步为高维、小样本情况下的最优鉴别分析方法建立了一个通用的算法框架 ,即先作K L变换 ,再用Fisher鉴别
  3. 所属分类:matlab

    • 发布日期:2017-04-01
    • 文件大小:6924
搜珍网 www.dssz.com