CDN加速镜像 | 设为首页 | 加入收藏夹
当前位置: 首页 会员管理中心 查看会员资料

查看会员资料

用 户 名:shunz*****

发送消息
  • Email:
    用户隐藏
  • Icq/MSN:
  • 电话号码:
  • Homepage:
  • 会员简介:

最新会员发布资源

  1. rbf

    1下载量:
  2. RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。 简单说明一下为什么RBF网络学习收敛得比较快。当网络的一个或多个可调参数(权值或阈值)对任何一个输出都有影响时,这样的网络称为全局逼近网络。由于对于每次输入,网络上的每一个权值都要调整,从而导致全局逼近网络的学习速度很慢。BP网络就是一个典型的例子。(RBF network
  3. 所属分类:matlab例程

    • 发布日期:2020-07-16
    • 文件大小:2573312
搜珍网 www.dssz.com