资源列表
图像拉伸
- 遥感图像处理,用直方均衡化方法、2%线性拉伸方法拉伸图像,亮度值分布均衡(Drawing images by histogram)
fenlei
- 利用hog提取特征输入到svm分类器中,适用于新手(Using hog extraction feature input to svm classifier, suitable for novices)
tuxiangchuli
- 对二维码图像进行灰度化、中值滤波、二值化、边缘检测、霍夫变换等预处理(The two-dimensional code image is grayscale, median filter, two valued, edge detection, Hough transform and other pre-processing.)
image
- 图像分割,识别目标,用于在药物领域的识别,效果很好,可以进行简单的测试(image segmention it use in medcion and the result is very good you can do simple test and use in some)
随机森林代码
- 基于GEE平台,landsat影像的随机森立法土地覆盖分类(Land cover classification based on the random son legislation based on the GEE platform.)
Untitled2
- BP神经网络基本原理概述:这种网络模型利用误差反向传播训练算法模型,能够很好地解决多层网络中隐含层神经元连接权值系数的学习问题,它的特点是信号前向传播、误差反向传播,简称BP(Back Propagation)神经网络。BP学习算法的基本原理是梯度最快下降法,即通过调整权值使网络总误差最小,在信号前向传播阶段,输入信号经输入层处理再经隐含层处理最后传向输出层处理;在误差反向传播阶段,将输出层输出的信号值与期望输出信号值比较得到误差,若误差较大则把误差信号传回隐含层直至输入层,在各层神经元中使用
26个字母识别 用matlab实现的
- 用matlab实现的26个字母识别。基于BP算法的字母识别其容错性和识别率相对较高,在有噪声的情况下训练其识别出错率也相应增加,许进一步改进。(26 letter recognition implemented with MATLAB.The letter recognition based on BP algorithm has a relatively high fault tolerance and recognition rate, and the error rate of recog
matlab中文字符的识别代码
- 基于BP人工神经网络的数字字符识别及MATLAB实现。(Digital character recognition and MATLAB implementation based on BP artificial neural network.)
新建文件夹
- 对干涉全息图进行重建,各个参数已经标注好了(Reconstruction of interference hologram)
slic-python-implementation-master
- SLIC算法实现超像素聚类,python版本为2.7(SLIC Algorithm for Superpixel Clustering, Python version is 2.7)
直线旋转
- 直线旋转例子,比较简单易懂,适合初学者参考。(The linear rotation example is relatively easy to understand and is suitable for beginners.)
时频工具箱
- 用于Matlab时频分析,导入路径可以使用。