资源列表
NSCTimagefusion
- NSCT轮廓波变换程序,用于图像融合,有图有解释说明-NSCT image fusion
chap15_6
- 利用radon变换实现车牌图像的倾斜校正,matlab源码-Use radon transform the image of the license plate tilt correction, matlab source
infrared-visible-image-fusion
- 红外与可见光图像自适应融合源代码,Matlab程序,文件中还有用作演示的处理图片,直接运行主函数(main.m)即可看到效果,有GUI窗口,在主函数中更改处理的红外光和可见光图像的路径程序会自适应得到结果- The adaptive fusion between infrared image and visible light image.
filter
- 本程序对同一图像增加噪声后,进行均值滤波、高斯平滑滤波和中值滤波三种方法的去噪和结果比较, 并进行了评价指标PSNR和SSIM的计算以及算法耗时的统计。 - The program on the same image after the noise increases, mean filter, de-noising and results of the Gaussian smoothing filter and median filter three methods of com
EM_CD
- 基于高斯混合模型和EM(Expectation Maximization)算法的SAR影像变化监测算法,并附带示例。总体思路是首先将两个时期的SAR影像做log和ratio运算,生成差分影像,然后通过EM算法估计高斯混合模型的参数,最后根据高斯混合模型最大概率,生成变化监测结果。-Unsupervised change detection method for SAR images using EM algorithms of Gaussian mixture model
basic_lane_detection
- 车道线检测的matlab实现,能够准确实现车道线,通过霍夫变换。-Lane line detection matlab implementation, it is possible to achieve accurate lane by Hough transform.
watermark-DCTDTT
- 基于离散余弦变换和离散切比雪夫变换的数字水印算法。本人EI论文完整的程序。-Based on discrete cosin transform and discrete chebyshev digital watermark.
mca
- mca形态学成分分析,将图片分为纹理部分和结构部分-MCA morphological component analysis, the image is divided into the texture part and the structural part
DE
- 最简单的差分格式有向前、向后和中心3种。 向前差分:f (n)=f(n+1)-f(n) 向后差分:f (n)=f(n)-f(n-1) 中心差分:f (n)=[f(n+1)-f(n-1)]/2-The easiest difference format forward, backward, and three kinds of centers. Forward differencing: f (n) = f (n+ 1)-f (n) Backward differenc
new-1
- 针对腐蚀和膨胀的C语言编写的图像处理算法,已测试很实用。-Against corrosion and the expansion of the image processing algorithm, tested to be very practical.
ImageEN-5.2.0
- 支持D5-XE7,功能非常强大,甚至可以做人脸、人眼识别跟踪、视频播放、摄像头控制、图像对比、图像加解密等,常用的图像处理功能更不在话下,处理效率极高,Demo也相当详尽。我一直在DelphiXE2下使用,下载包内包含了全部源码、帮助文档 、安装方法、Demo下载链接(因Demo太大只提供了下载链接,请需要的朋友自行下载)-Support D5-XE7, very powerful, even a man can face, the human eye identification and tr
ICA
- 自己写的代码,用改进的ica方法实现盲源分离,效果比传统的盲源分离要好很多,可以直接运行实现。-Write their own code, using the improved ICA method to achieve blind source separation, the effect is better than the traditional blind source separation is much better, you can directly run to achieve.