资源列表
UCI
- 机器学习常用的35个UCI数据集,包括iris、lenses、mushroom、pima indians、wine等。-Machine learning UCI common data set 35, including iris, lenses, mushroom, pima indians, wine and the like.
ID3算法
- d3算法源程序。使用的方法是编写一个*.dat文件保存样本数据,还有一个*.tag文件保存属性列名,且最后一个属性是标号属性。运行是输入id3 文件名。
贝叶斯网工具箱
- 贝叶斯网的工具箱,很实用,可以直接运行。(Bayesian network toolbox, very practical, you can run directly.)
NBC
- 朴素贝叶斯模型,用来做大数据的分类,是一种很简单易上手的模型,代码很简单,有例子。(Naive Bayes model is used to enlarge the classification of data)
Tensor-Factorization-HOSVD-iterative-master
- hosvd 迭代分解,很好用,是一个硕士论文里的代码(terative HOSVD algorithm to decompose tensor and find its Singular factors in each mode.)
ConfusionMatrices
- 基于matlab的混淆矩阵算法,内含具体实例,可作出混淆矩阵相关图。
LARS算法
- 包括LARS的经典文章和实现代码(MATLAB)(Abstract There are a number of interesting variable selection methods available beside the regular forward selection and stepwise selection methods. Such approaches include lasso (Least Absolute Shrinkage and Selection Operat
直觉模糊C均值聚类
- 对所获取的数据进行无监督的直觉模糊C均值聚类(intuitionistic fuzzy C-means clustering)
BinaryNet-master
- 二值化程序代码,对数据进行很好地优化,实用于图像处理,图像去噪(Two value of the program code, the data is well optimized)
SVM
- 改程序可以实现基于支持向量机方法的径流中长期预报(A runoff forecasting method based on Support Vector Machines)
SVD.m
- 利用SVD实现item-based CF: 优点: 简化数据,去除噪声,提高算法的结果 缺点: 数据的转换可能难以理解 适用数据类型: 数值型数据(Svd decomposition plays an important role in the decomposition of eigenvalues of high-dimensional data, while using low-dimensional data for approximate approximation)
kmediod
- k-mediod、knn、uci数据集。 数据挖掘、机器学习中的经典聚类、分类算法(K-mediod, KNN, and UCI data sets. Data mining and classical clustering and classification algorithms in machine learning)