资源列表
palne
- 模拟飞机在飞机场起飞和降落 输入想模拟的时间长度,输出为调度的过程 降落平均等待时间..起飞平均等待时间 -Simulating an aircraft taking off and landing at the airport would like to enter the length of time simulation, the output of the process for scheduling the average waiting time for landing
maxProfitBBKnapsack
- 用vc++6编写的程序,采用最大收益分枝定界法,解决背包问题。-Vc++6 prepared with the procedure for the maximum benefit from branch and bound method to solve knapsack problem.
recursiveBTKnapsack
- 用vc++6编写的程序,采用回溯法,解决背包问题。-Vc++6 with the preparation of the procedures, the use of backtracking to solve knapsack problem.
BitTree
- 二叉树的基本操作和层次遍历,很简单的数据结构的代码。-The basic binary tree traversal operation and level, the data structure is very simple code.
@Cmy_Binary_Tree_template
- 一个基于排序二叉树的模版,用来巩固二叉树的基本算法--前序、后序、中序遍历等。-A binary tree based on the sort of template for the consolidation of the basic binary tree algorithm- pre-order, after the sequence, and so on in order traversal.
Dijkstra2009
- 银行家算法: 1、能任意设定资源的种类数。 2、能任意设定进程的总数。 3、能查看各类资源的剩余情况。 4、能查看各个进程的资源分配情况。 5、当某进程申请资源时,能用银行家算法和安全性算法检查系统的安全性。 6、当系统处于安全状态时,能输出系统的安全性序列。 7、在初始化银行家算法时,能对输入的数据进行判断,并能报错! -Banker' s Algorithm: 1, to arbitrarily set the number of types of r
SearchDemonstration
- 能够模拟多种经典算法的过程,为算法学习者学习提供了很大便利-Classical algorithm to simulate a wide range of process, provided for the algorithm to learn a great deal of learners to facilitate the
BinaryTrees
- Binary trees super tutorial. All ur tree concepts cleared.
AVRClanguge
- avr单片机的c语言书籍,内容丰富,易懂,并且有很多历程,有助于单片机开发-avr microcontroller c language books, content-rich, easy-to-understand, and a lot of history, contribute to the development of single-chip
datastruct
- 数据结构实验代码,从中可以学到很多基础的东西-data struct
Dijkstra
- 本程序主要对操作系统中的死锁预防部分的理论进行实验。设计一个程序,该程序可对每一次资源申请采用银行家算法进行分配。 1) 设计多个资源:10; 2) 设计多个进程:8 ; 3) 设计银行家算法相关的数据结构; 4) 动态进行资源申请、分配、安全性检测并给出分配结果 -This procedure focused on the prevention of deadlock in the operating system part of the theory of the exp
FastSortandKnap
- 快速排序和背包问题的C++实现代码,其中快速排序采用数组中第一个元素、最后一个元素以及中间元素的中间值作为枢轴。-Quick Sort and the knapsack problem of C++ code, including the use of quick sort of the first element of the array, the last element, as well as the middle element as the pivot of the median.