资源列表
xml网页开发实例代码
- < xml网页开发实例开发>>一书的全部源代码和实例-lt; Lt; Xml examples of the development of web development gt; Gt; A book of all the source code and examples
optimnn
- optimnn用遗传算法优化神经网络结构源程序,输入数据文件sample-optimnn genetic algorithm optimization neural network structure source, the input data file sample
scs
- Scs.cpp 基本分类算法源程序,输入数据文件cfile.txt,efile.txt,gfile.txt,pfile.txt,rfile.txt,tfile.txt-Scs.cpp basic classification algorithm source code, the input data file cfile.txt, efile.txt, gfile.txt, pfile.txt, rfile.txt, tfile.txt
parser
- c# 的一个parser ,用于C#中代码中文本的解析。-a parser for the C# code to the Chinese version of the analytic.
单链表的合并
- 可以将两个无序的单链表和并成一个单链表!表的长度自己可以改!-disorder can be two and a single linked list and into a single linked list! The length of the table he can change!
sga-c遗传算法c代码
- 这是一个遗传算法的c的源代码。在上传的压缩包中,有一个对所有原程序包的详细说明的pdf 。-This is a genetic algorithm c source code. The upload compressed, one for all the original package, a detailed descr iption of the pdf.
mul-anneal
- 本代码包包含一个模拟退火算法的c++程序。此外还有其他一些源码,这在该压缩包中,有一个readme文档,对其进行了详细说明。-this code contains a simulated annealing algorithm c procedures. There are also some other source, which in the compressed, a readme files, its a detailed explanation.
tanxin
- 这是一个贪心算法的c程序。贪心算法(也叫贪婪算法)不是某种特定的算法,而是一类抽象的算法,或者说只是一种思想,它的具体表现在,对解空间进行搜索时,不是机械地搜索,而是对局部进行择优选取,贪心算法的目的不是为了找到全部解,也当然找不出最优解,而只是找出一种可行解,这样就会得到惊人的高效性。因此,贪心算法也叫启发式搜索,这种启发就是所谓的“贪心策略”。-This is a greedy algorithm c procedures. Greedy algorithm (also known as t
unsample
- 图像区域非均匀采样matlab程序 可以实现类人眼的图像不同采样率演示-Image regional non-uniform sampling procedures can be achieved Matlab category eye images demonstrate different sampling rates
emboss
- 图像浮雕化matlab程序 就好像《康熙大帝》中浮雕效果,对不同图像只要修改文件名-relief images of Matlab programs like the "Emperor Kangxi" relief and the effect of different image file name as long as the changes
vb神经网络预测
- 利用VB进行神经网络预测,可以进行路基沉降及路面工程预测。-With ANN coded by VB, the condition of base sedimentation and road engineering can be predicted.
修正剑桥模型的源程序(FORTRAN编写)
- 修正剑桥模型的源程序(FORTRAN编写)-amendment Cambridge model of the source (FORTRAN preparation)