资源列表
HuffmanTree
- 包含了赫夫曼树编码译码所有具体过程(一整个工程)以及测试文档(It contains all the coding processes and testing documents.)
suanfa
- 相当经典的图着色算法,一个ppt ,还有一个算法实现,十分浅显易懂。-Quite the classic graph coloring algorithm, a ppt algorithm is very easy to understand.
Tree
- 1、 编写程序按先序次序和中序次序,确定这棵树二叉树。 2、 输出这棵树的后序序列。 (树的节点数目不超过100) -1, write a program to determine the order of the first order and sequence order tree binary tree. 2, the output of this tree postorder sequence. (The number of nodes of the tree does no
sorts
- 插入、合并、快速、冒泡、桶排序性能分析 标准C++代码,运用面向对象的设计理念,整体结构紧凑富有逻辑性 具体算法参照《算法导论》第四版 vs2010下可以正常运行 其他环境下,请自行建立工程,并拷贝sorts目录下sorts.cpp CalTime.h CalTime.cpp的内容 -Insert, merge, quick, bubble, bucket sort performance analysis Standard C code, the use of
Path
- 使用顺序队列求迷宫的最短路径。move[]数组四个方向的试探,第一行输入的数据表示迷宫的数据规模n(1<n<=20)行m(1<m<=20)列,S是出发点,D是迷宫的出口,.号表示通路,X表示墙体不通,输出的数据表示从入口到出口最少需要走k步或没有通路-Use the order of the queue and maze shortest path. move [] array of four directions of temptation, the first lin
Line
- 1、定义一个建立一元多项式的函数; 2、定义能对单链表按指数排序的函数; 3、定义一元多项式加法和减法函数; 4、定义显示一元多项式的函数; 5、编写主程序调用上面的函数实现一元多项式的加减。 -1, the definition of an established one yuan polynomial function 2, the definition of a single linked list sorted exponential function 3, de
BiTreeShow
- 二叉树应用,显示树形结构 对于任意的树型结构按从上到下,从左到右的方式显示出来,要求父结点在子结点的左上方-Binary application that displays a tree for any tree structure from top to bottom, left to right of way shown to require the parent node in the left child node, the connection between nodes do not
LCS
- 数据结构最长公共子串实现,MFC实现,界面良好-Data structure to achieve the longest common sub-string, MFC realize a good interface
BST
- 二叉树相关代码,包括树的插入,搜索,平衡等相关操作-Tree-related code, including tree insert, search, balance and other related operations
MaxLoading
- 最大装载问题,,采用贪心法实现,希望对大家有所帮助-The maximum loading problem ,, using greedy method to achieve, we hope to help
QueenMFC
- N皇后的C++实现,可以自定义输入皇后数,并智能显示出皇后的N中方案。-N-Queens of the C++ implementation, you can customize the number of input Queen, and the N-smart show in Queen s program.
Dijkstras-algorithm
- Let the node at which we are starting be called the initial node. Let the distance of node Y be the distance from the initial node to Y