资源列表
SVM
- SVM,实现线性可分二维数据和线性不可分二维数据的分类。svm的应用:垃圾邮件的分类。-SVM, realized linearly separable two-dimensional data and linear inseparable two-dimensional data classification. svm applications: spam classification.
stackedAE
- 堆栈自编码,通过两个稀疏自编码的堆叠和softmax分类模型,实现手写体的分类。-Stack self-encoding, since encoding by two sparse stack and softmax classification model to classify handwriting.
Sparse-Autoencoder
- 稀疏自编码是构成堆栈式自编码的基础,通过稀疏自编码可以提取图像的边缘特征。-Sparse coding constitute the basis of the stack self-encoded by sparse coding can be extracted the edge feature of the image.
self-taught-learning
- 自主学习把稀疏自编码器和分类器实现结合。先通过稀疏自编码对无标签的5-9的手写体进行训练得到最优参数,然后通过前向传播,得到训练集和测试集的特征,通过0-4有标签训练集训练出softmax模型,然后输入测试集到分类模型实现分类。-Independent Learning the encoder and the sparse classifiers achieve the combination. First through sparse coding since no label was ha
TSP-solved-by-ACO
- 求TSP最短路径问题,采用蚁群算法求解,给予C++编程的资料和程序-TSP solved by ACO
ex1
- 贝叶斯方法一篇比较科普的中文介绍可以见pongba的平凡而神奇的贝叶斯方法: http://mindhacks.cn/2008/09/21/the-magical-bayesian-method/,实际实现一个贝叶斯分类器之后再回头看这篇文章,感觉就很不一样。 在模式识别的实际应用中,贝叶斯方法绝非就是post正比于prior*likelihood这个公式这么简单,一般而言我们都会用正态分布拟合likelihood来实现。-pattern identification
netural-network
- 常用神经网络算法,以及原理实现。。。包括MLP神经网络、卷积神经网络-Common neural network algorithm, as well as the principle of implementation... Including MLP neural network, convolutional neural network, etc.
NN
- 改进过的BP算法,有dropout,和weight decay项,可以设置三种激活函数。可以用来分类。-BP had improved algorithm, dropout, and weight decay term, you can set three activation functions. It can be used for classification.
Collaborative-fuzzy-clustering
- 协同模糊聚类算法,这是聚类算法的一种。国内研究的人不多。-Collaborative fuzzy clustering,
BPni
- 对BP神经网络进行逆向建模,能够对微波器件进行逆向分析,从而进行设计-build up BP neural network inverse modeling to analysis microwave devices and to design them.
Wnn
- 小波神经网络程序,用于图像处理,可以和一些算法结合,达到更好的效果-Wavelet neural network program, for image processing, and some algorithms can be combined to achieve better results
psoRBFS110
- 用pso算法优化RBF神经网络,从而对微带线的S11参数进行建模-RBF neural networks were optimized by pso algorithm, thus model for S11 parameters of the microstrip line