资源列表
myPSO
- 粒子群算法,也称粒子群优化算法或鸟群觅食算法(Particle Swarm Optimization),缩写为 PSO, 是近年来由J. Kennedy和R. C. Eberhart等[1] 开发的一种新的进化算法(Evolutionary Algorithm - EA)。PSO 算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutati
beautifulsoup4-4.4.1.tar
- 目前只是一个测试功能还等待完善,后期会加油请多多支持(it is a little file for test and i only want to download the file you know?)
Reports_files
- 作为提高组织病理学诊断科学报告文件的准确性和效率的深度工具,仅供参考附paper(Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis Scientific Reports_files)
get-pip
- 安装pip,这是关于python版本的0.9.1的版本,是目前最新版本,可以安装各种功能包,在这里推荐给大家。(installing PIP, which is version 0.9.1 of python version, is the latest version of the current version, which can be installed with various functional packages, which are recommended here.)
dijkstra
- dijkstra算法用于求解最优路径问题,拿来即用,需要理解程序的用法(Dijkstra algorithm is used to solve the optimal path problem)
MINIST_CNN
- 使用卷积神经网络实现手写体识别,有train.m与test.m,里面附有数据集(use CNN to recognize the ministdataset)
MOEAD
- 多目标进化优化,一种基于分解的多目标进化算法(MOEA / D)(Multi - objective evolutionary optimization, a multi-objective evolutionary algorithm based on decomposition ( moea / d ))
面向机器智能的TensorFlow实践
- 适合作为Tensorflow学习的入门书籍,很多基本概念讲的比较清楚(Suitable for Tensorflow as an introduction to learning books, explain many basic concepts more clear)
MNIST-classification-example-master
- MNIST-classification-example
chapter42
- 并行运算与神经网络:神经网络并行运算,多层神经网络训练算法的选择(Parallel computing and neural networks)
chapter41
- 定制神经网络:产生结构可变的空神经网络,定义神经网络的子结构(Realization of neural network)
深度自动编码器的研究与展望_曲建岭
- 到于深度自动编码器编码器的原理,构建过程等的简要介绍(A brief introduction to Deep Auto-encoders.)