资源列表
crane_optimation_boundry_conditions
- 起重机臂架优化的边界条件文件,配合遗传算法工具箱使用,实现多参数优化配置。-the boundary condition for the optimization of crane jib,combining thegenetic algorithm toolbox to use
huiseyuce
- 灰色预测算法程序,可以运行,应用于matlab中-gray prediction
deep-learning
- 深度学习主要通过人工神经网络的思想发现数据的分布式特征表示-Deep learning discovers the distributed representation through artificial neural network.
demo3
- 在demo中,用EKF和有噪声的EKF训练非线性、非平稳数据。-In this demo, I use the EKF and EKF with noise adaptation to train a neural network with data generated a nonlinear, non-stationary state space model. Adaptation is done by matching the innovations ensemble covariance
Bland-Altman
- Bland-Altman算法实现,包含比值法和差值法,包含做图功能-Bland-Altman algorithm to achieve, including the ratio method and the difference method, including the map function
open-mirror
- 电力负荷预测在国民的生产生活方面发挥着重要职能。精确的电力负荷预测,对电力系统的生产安排、安全分析和经济调度发挥着极其重要的作用,而它的预测精度则影响着电力市场的社会和经济效益。-: U7535 u529B u753 u5B09 u5129 u5B09 Jiaotong University Wang Zhao
kNN
- 机器学习实战中,K近邻算法的实现。包括算法实现,算法分类测试-Machine learning combat, the realization of K nearest neighbor algorithm. Including the algorithm, the algorithm classification test
bayes
- 机器学习实战中,实现贝叶斯分类算法。包括算法的实现,必要的注释,分类测试-Machine learning actual combat, achieve Bayesian classification algorithm. Including the implementation of the algorithm, as required notices, classification test
svmMLiA
- 机器学习实战中,SVM向量机算法的实现。包括必要的注解、分类效果的测试-Machine learning actual combat, achieve SVM vector machine algorithm. Including tests necessary notes, classification effect
reconstitution
- reconstitution函数,该函数用来重构相空间。-The reconstitution function, which is used to reconstruct the phase space.
MGMM_Particle-Filter
- 本文分别实现了整体模板更新和选择性子模块更新方法,以适应运动目标的运动姿态变化以及运动背景变化,并将其分别与粒子滤波目标跟踪算法相结合,以提高跟踪的鲁棒性。-This thesis studies and implements a total target model updating method and a selected sub-model updating method, and then combines it with the particle filter algorithm f
Machine-Learning-in-Action
- 分析常见的机器学习算法,并进行实际的应用,能够很好的熟练掌握-Analysis of common machine learning algorithms, and the actual application, can be a good grasp