资源列表
道格拉斯普克抽稀算法
- 道格拉斯-普克抽稀算法python实现。用于空间数据抽稀。(Douglas-Puck thinning algorithm implemented in python. Used for thinning spatial data.)
casForest-master
- 这是一个级联森林算法,主要用于机器学习,深度学习的使用(This is a cascaded forest algorithm, mainly used for machine learning, deep learning)
神经网络
- MATLAB语言编写的神经网络,,可以用于仿真预测(The neural network written in MATLAB language can be used for simulation prediction)
id3.1(1)
- 在python中,利用ID3方法画决策树,决策树是一种依托决策而建立起来的一种树。在机器学习中,决策树是一种预测模型,代表的是一种对 象属性与对象值之间的一种映射关系(In Python, ID3 method is used to draw decision tree. Decision tree is a kind of tree based on decision. In machine learning, decision tree is a prediction model, whic
gated-graph-neural-network-samples-master
- 此代码是门控图神经网络的python代码实现(This code is a Python code implementation of the gating graph neural network)
BP_NNtool
- 能够根据样本数据训练一个很好的网络系统,根据这个系统可以很好的预测数据值(Able to predict data values well based on sample data)
机器学习实战书+源代码
- 机器学习横跨计算机科学、工程科学和统计学等多个学科,需要多学科的专业知识。在需要解释并操作数据的领域都或多或少可以运用到机器学习,通过这本书可以系统地学习基于python语言的机器学习的相关知识(Machine Learning in Action written by Peter Harringto. Machine learning covers many subjects, such as computer science, engineering science and statisti
PyTorch-GAN-master
- 里面包含多种gan网络,不同网络实现不同效果风格化(It contains a variety of Gan networks, different networks to achieve different effects stylization)
基于BP神经网络的性别识别
- MATLAB神经网络与实例精解(陈明著) 第6章例6.1程序 基于BP神经网络的性别识别 是学习BP神经网络的经典程序(Matlab neural network and case study Chapter 6 example 6.1 procedure Gender recognition based on BP neural network It is a classic program for learning BP neural network)
xgboost 代码 + 课件
- XGboost的教程和代码,网上是收费的课程,特别的好。(Xgboost tutorial and code, online is a fee based course, especially good.)
h5_to_weight_yolo3-master
- 可以将训练权重.h文件转化为.weights文件,方便不同平台使用(The training weight. H file can be converted into. Weights file, which is convenient for different platforms)
Keras快速上手:基于Python的深度学习实战
- 该书理论和实践相结合,介绍了当前深度学习应用的几个主要框架和应用方向,实用性强,内容紧凑。基于Keras这个高度抽象的深度学习环境,全书强调快速构造深度学习模型和应用于实际业务,因此特别适合深度学习实践者和入门者学习,是一本必不可少的参考书。(The book combines theory and practice to introduce several main frameworks and application directions of current deep learning a