资源列表
chap6_3
- 采用DRNN神经网络整定的PID解耦程序,非常实用的哦。-DRNN using neural network-tuning PID decoupling of the process, oh, very practical.
cspnum1
- csp算法,异步脑机接口特征值提取。脑-机接口(brain-computer interface,BCI)技 术提供了一种非肌肉控制的通讯通道,使大脑可以直接和外部环境进行信息交 互。脑-机接口将人脑的信号直接转换成对外部设备的控制命令,信息的传递 不再需要经过外周神经和肌肉等传出通道[1-In motor imagery-based Brain Computer Interfaces (BCI), discriminative patterns can be extracted
Geneticalgo_MAX
- 该程序利用遗传算法求Rosenbrock函数的极大值。该算法主要包括确定决策变量、建立优化模型、确定编码方法、确定解码方法、确定个体评价方法、设计遗传算子、确定遗传算法的运行参数等七个步骤。-the procedures for the use of genetic algorithms Rosenbrock function of great value. The algorithm including the identification of the main decision varia
TFIDF
- 用于计算文档向量的TFIDF权值,代码使用Java语言写的-Used to calculate the document vector of TFIDF weight, code written using the Java language
grbf
- 介绍自组织神经网络的外文资料 对于学习自组织神经网络有很大的帮助-Introduce self-organizing neural network of foreign material for learning self-organized neural network has very great help
bayes_bpnet
- 采用贝叶斯正则化算法提高 BP 网络的推广能力。我们采用两种训练方法,即 L-M 优化算法(trainlm)
PhyloRichness
- 在生物序列处理中,将RDPSIMO的分类地位文件结合丰度文件,按分类地位重新统计丰度-in bio-sequence processing, the RDP-SIMO results should be translated to a tab-splitted file, and summed up, this program helps do this
BPGA
- 运行平台MATLAB,基于BP神经网络与GA算法的寻优-Run the platform of MATLAB optimization algorithm based on BP neural network and GA
UntitledHopfield
- 联想过程:输入待测酒样数值,利用得到的网络进行联想,最后确定待测酒样属于哪种类别模式,就可以得到综合评价的结果。-Lenovo procedure: Enter the measured value wine samples using the resulting network association to finalize the test wine samples belong to which category mode, you can get the results of a com
bp
- bp神经网络算法用于拟合和预测,具有良好的非线性性,拟合精度高等特点-bp neural network algorithm for fitting and forecasting, has a good non-linear and high precision
liuxingshang
- 求解旅行商问题,可以应用到多种求解最优问题上,比如说走遍全中国-Traveling salesman problem
粒子群算法
- 粒子群算法,也称粒子群优化算法或鸟群觅食算法(Particle Swarm Optimization),缩写为 PSO, 是近年来由J. Kennedy和R. C. Eberhart等 开发的一种新的进化算法(Evolutionary Algorithm - EA)。PSO 算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的"交叉"(Crossover) 和"