文件名称:bbbb
-
所属分类:
- 标签属性:
- 上传时间:2012-11-16
-
文件大小:270.35kb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
摘 要:提出一种新的基于Pareto多目标进化免疫算法(PMEIA)。算法在每一代进化群体中选取最优非支配抗体保存到记忆细胞文档中 同时引入Parzen窗估计法计算记忆细胞的熵值,根据熵值对记忆细胞文档进行动更新,使算法向着理想Pareto最优边界搜索。此外,算法基于点在目标空间分况进行克隆选择,有利于得到分布较广的Pareto最优边界,且加快了收敛速度。与已有算法相比, PMEIA在收敛性、多样性,以及解的分布性方面都得到很好的提高。-Abstract:This paperproposed a new pareto-based multi-object evolutionary mi mune algorithm(PMEIA). PMEIA selected
optmi alnon-dominated antibodieswhichwere then reserved inmemory cellarchive, and introducedParzenwindow to calculate
entropy ofmemory cells. Updated thememory cell archive according to entropy ofmemory cells. This guarantees the conver-
gence to the true Pareto fron.t Moreover, the performance of clone selection was dependent on distribution in the objective
space, whichwas favorable forgetting awidely spreadPareto frontand mi proving convergence speed. Comparedwith the exis-
ted algorithms, the obtained solutions ofPMEIA havemuch betterperformance in the convergence, diversity and distribution.
optmi alnon-dominated antibodieswhichwere then reserved inmemory cellarchive, and introducedParzenwindow to calculate
entropy ofmemory cells. Updated thememory cell archive according to entropy ofmemory cells. This guarantees the conver-
gence to the true Pareto fron.t Moreover, the performance of clone selection was dependent on distribution in the objective
space, whichwas favorable forgetting awidely spreadPareto frontand mi proving convergence speed. Comparedwith the exis-
ted algorithms, the obtained solutions ofPMEIA havemuch betterperformance in the convergence, diversity and distribution.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
基于Pareto的多目标进化免疫算法.caj
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.