文件名称:titanium
介绍说明--下载内容来自于网络,使用问题请自行百度
VC Support Vector Classification
Usage: [nsv alpha bias] = svc(X,Y,ker,C)
Parameters: X - Training inputs
Y - Training targets
ker - kernel function
C - upper bound (non-separable case)
nsv - number of support vectors
alpha - Lagrange Multipliers
b0 - bias term
-VC Support Vector Classification
Usage: [nsv alpha bias] = svc(X,Y,ker,C)
Parameters: X - Training inputs
Y - Training targets
ker - kernel function
C - upper bound (non-separable case)
nsv - number of support vectors
alpha - Lagrange Multipliers
b0 - bias term
Usage: [nsv alpha bias] = svc(X,Y,ker,C)
Parameters: X - Training inputs
Y - Training targets
ker - kernel function
C - upper bound (non-separable case)
nsv - number of support vectors
alpha - Lagrange Multipliers
b0 - bias term
-VC Support Vector Classification
Usage: [nsv alpha bias] = svc(X,Y,ker,C)
Parameters: X - Training inputs
Y - Training targets
ker - kernel function
C - upper bound (non-separable case)
nsv - number of support vectors
alpha - Lagrange Multipliers
b0 - bias term
相关搜索: SVC
(系统自动生成,下载前可以参看下载内容)
下载文件列表
titanium.mat
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.