文件名称:shibie
-
所属分类:
- 标签属性:
- 上传时间:2012-11-16
-
文件大小:56.57kb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
基于奇异值分解的人脸识别方法
梁毅雄 龚卫国 潘英俊 李伟红 刘嘉敏 张红梅
提出了一种将傅里叶变换和奇异值分解相结合的人脸自动识别方法.首先对人脸图像进行傅里叶变换,得到其具有位移不变特性的振幅谱表征.其次,从所有训练图像样本的振幅谱表征中给定标准脸并对其进行奇异值分解,求出标准特征矩阵,再将人脸的振幅谱表征投影到标准特征矩阵后得到的投影系数作为该人脸的模式特征.然后,对经典的最近邻分类器算法进行了改进,并采用模式特征之间的欧式距离作为相似性度量,从而完成对未知人脸的识别.采用ORL (Olivetti Research Laboratory)人脸库对本文提出的人脸识别方法进行验证,获得了100.00 的识别率.实验结果表明,本方法优于现有的基于奇异值分解的人脸识别方法,且对表情、姿态变换等具有一定的鲁棒性.
-Face recognition based on singular value decomposition method
Deliberate simultaneously Gong Weiguo Li Wei Hung Stephen Lau, Hong-Mei Zhang Ying-Jun Pan
Paper, a Fourier transform and singular value decomposition of the combination of automatic face recognition. First of all, the face image by Fourier transformation, it has the same characteristics of the displacement amplitude spectra. Secondly, all training The amplitude spectrum of the sample images given in standard face representation and its singular value decomposition, find the standard characteristic matrix, then the amplitude of spectral characterization of human faces projected onto the standard characteristic matrix of projection coefficients obtained as the face of the model features . Then, the classical nearest neighbor classifier is improved, and the use of Euclidean distance between pattern features as the similarity measure, thus completing the identification of unknown human faces. using ORL (Olivetti Research La
梁毅雄 龚卫国 潘英俊 李伟红 刘嘉敏 张红梅
提出了一种将傅里叶变换和奇异值分解相结合的人脸自动识别方法.首先对人脸图像进行傅里叶变换,得到其具有位移不变特性的振幅谱表征.其次,从所有训练图像样本的振幅谱表征中给定标准脸并对其进行奇异值分解,求出标准特征矩阵,再将人脸的振幅谱表征投影到标准特征矩阵后得到的投影系数作为该人脸的模式特征.然后,对经典的最近邻分类器算法进行了改进,并采用模式特征之间的欧式距离作为相似性度量,从而完成对未知人脸的识别.采用ORL (Olivetti Research Laboratory)人脸库对本文提出的人脸识别方法进行验证,获得了100.00 的识别率.实验结果表明,本方法优于现有的基于奇异值分解的人脸识别方法,且对表情、姿态变换等具有一定的鲁棒性.
-Face recognition based on singular value decomposition method
Deliberate simultaneously Gong Weiguo Li Wei Hung Stephen Lau, Hong-Mei Zhang Ying-Jun Pan
Paper, a Fourier transform and singular value decomposition of the combination of automatic face recognition. First of all, the face image by Fourier transformation, it has the same characteristics of the displacement amplitude spectra. Secondly, all training The amplitude spectrum of the sample images given in standard face representation and its singular value decomposition, find the standard characteristic matrix, then the amplitude of spectral characterization of human faces projected onto the standard characteristic matrix of projection coefficients obtained as the face of the model features . Then, the classical nearest neighbor classifier is improved, and the use of Euclidean distance between pattern features as the similarity measure, thus completing the identification of unknown human faces. using ORL (Olivetti Research La
相关搜索: 人脸识别
奇异值 图像处理
傅里叶
Face recognition based on singular value decomposi
特征矩
euclidean distance of pixels
image decomposition
pattern similarity
nearest face
face recognition using singular value decompositio
(系统自动生成,下载前可以参看下载内容)
下载文件列表
基于奇异值分解的人脸识别方法.caj
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.