文件名称:FusionSegmentationAlgorithm
介绍说明--下载内容来自于网络,使用问题请自行百度
针对合成孔径雷达(SAR) 图像含有大量斑点噪声的特点,基于Contourlet 的多尺度、局部化、方向性和各向
异性等优点,并结合隐马尔科夫树( HMT) 模型和隐马尔科夫场(MRF) ,提出了一种基于Contourlet 域持续性和聚
集性的SAR 图像模糊融合分割算法。该算法有效捕获了Contourlet 子带的持续性和聚集性,并分别用HMT 和
MRF 来刻画,再依据模糊测度,将多尺度HMT 和MRF 有机融合,建立Contourlet 域HMT2MRF 融合模型,并导
出新模型下的最大后验概率(MAP) 分割公式。对实测SAR 图像进行了仿真,仿真结果和分析表明:与小波域上的
HMT2MRF 融合分割及Contourlet 域上HMT 和MRF 分割算法相比,该算法在抑制斑点噪声的同时,有效地提高
了SAR 图像的分割精度- In view of the speckle noise in the synthetic aperture radar (SAR) images , and based on the Contourlet′s
advantages of multiscale , localization , directionality , and anisot ropy , a new SAR image fusion segmentation
algorithm based on the pe rsis tence and clustering in the Contourlet domain is p roposed. The algorithm captures the
pe rsis tence and clus tering of the Contourlet t ransform , which is modeled by hidden Markov t ree (HMT) and Markov
random field (MRF) , respectively. Then , these two models are fused by fuzzy logic , resulting in a Contourlet
domain HMT2MRF fusion model . Finally , the maximum a poste rior (MAP) segmentation equation for the new fusion
model is deduced. The algorithm is used to emulate the real SAR images . Simulation results and analysis indicate that
the p roposed algorithm effectively reduces the influence of multiplicative speckle noise , imp roves the segmentation
accuracy and p rovides a bet te r visual quality for SAR images ove r the
异性等优点,并结合隐马尔科夫树( HMT) 模型和隐马尔科夫场(MRF) ,提出了一种基于Contourlet 域持续性和聚
集性的SAR 图像模糊融合分割算法。该算法有效捕获了Contourlet 子带的持续性和聚集性,并分别用HMT 和
MRF 来刻画,再依据模糊测度,将多尺度HMT 和MRF 有机融合,建立Contourlet 域HMT2MRF 融合模型,并导
出新模型下的最大后验概率(MAP) 分割公式。对实测SAR 图像进行了仿真,仿真结果和分析表明:与小波域上的
HMT2MRF 融合分割及Contourlet 域上HMT 和MRF 分割算法相比,该算法在抑制斑点噪声的同时,有效地提高
了SAR 图像的分割精度- In view of the speckle noise in the synthetic aperture radar (SAR) images , and based on the Contourlet′s
advantages of multiscale , localization , directionality , and anisot ropy , a new SAR image fusion segmentation
algorithm based on the pe rsis tence and clustering in the Contourlet domain is p roposed. The algorithm captures the
pe rsis tence and clus tering of the Contourlet t ransform , which is modeled by hidden Markov t ree (HMT) and Markov
random field (MRF) , respectively. Then , these two models are fused by fuzzy logic , resulting in a Contourlet
domain HMT2MRF fusion model . Finally , the maximum a poste rior (MAP) segmentation equation for the new fusion
model is deduced. The algorithm is used to emulate the real SAR images . Simulation results and analysis indicate that
the p roposed algorithm effectively reduces the influence of multiplicative speckle noise , imp roves the segmentation
accuracy and p rovides a bet te r visual quality for SAR images ove r the
相关搜索: sar
MRF
HMT
Hidden Markov Models image matlab
sar image fusion
sar 2011
speckle
马尔科夫
speckle synthetic aperture radar
MRF fusion
(系统自动生成,下载前可以参看下载内容)
下载文件列表
基于Contourlet域持续性和聚集性的合成孔径雷达图像融合分割算法.pdf
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.