文件名称:fractal
介绍说明--下载内容来自于网络,使用问题请自行百度
分形,是以非整数维形式充填空间的形态特征。分形可以说是来自于一种思维上的理论存在。-Fractal, is filling in the form of non-integer dimension of space morphology. Fractal can be said to come from the existence of a theory of thinking.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
fractal/triangless.m
fractal/Cantor3.m
fractal/computeroflyapnov.m
fractal/iterative_z25cd.m
fractal/Circular.m
fractal/xn1axn.m
fractal/lorenz.m
fractal/chaos_parabola.m
fractal/M_set_by_tan3.m
fractal/M_set_by_tan1.m
fractal/box_frac_dem.m
fractal/dbyd.m
fractal/ChaoticFractalTree.m
fractal/Thorn_Fractal.m
fractal/Poincare.m
fractal/Poincare_section.m
fractal/Poincare_section2.m
fractal/Pickover3.m
fractal/stick.m
fractal/turning.m
fractal/fractalsurface.m
fractal/fractalsurface2.m
fractal/fractalsurface2.asv
fractal
fractal/Cantor3.m
fractal/computeroflyapnov.m
fractal/iterative_z25cd.m
fractal/Circular.m
fractal/xn1axn.m
fractal/lorenz.m
fractal/chaos_parabola.m
fractal/M_set_by_tan3.m
fractal/M_set_by_tan1.m
fractal/box_frac_dem.m
fractal/dbyd.m
fractal/ChaoticFractalTree.m
fractal/Thorn_Fractal.m
fractal/Poincare.m
fractal/Poincare_section.m
fractal/Poincare_section2.m
fractal/Pickover3.m
fractal/stick.m
fractal/turning.m
fractal/fractalsurface.m
fractal/fractalsurface2.m
fractal/fractalsurface2.asv
fractal
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.