文件名称:SVM_Short-term-Load-Forecasting
介绍说明--下载内容来自于网络,使用问题请自行百度
优秀论文及配套源码。首先阐述了负荷预测的应用研究现状,概括了负荷预测的特点及其影响因素,归纳了短期负荷预测的常用方法,并分析了各种方法的优劣;接着介绍了作为支持向量机(SVM)理论基础的统计学习理论和SVM的原理,推导了SVM回归模型;本文采用最小二乘支持向量机(LSSVM)模型,根据浙江台州某地区的历史负荷数据和气象数据,分析影响预测的各种因素,总结了负荷变化的规律性,对历史负荷数据中的“异常数据”进行修正,对负荷预测中要考虑的相关因素进行了归一化处理。LSSVM中的两个参数对模型有很大影响,而目前依然是基于经验的办法解决。对此,本文采用粒子群优化算法对模型参数进行寻优,以测试集误差作为判决依据,实现模型参数的优化选择,使得预测精度有所提高。实际算例表明,本文的预测方法收敛性好、有较高的预测精度和较快的训练速度。-first expounds the recent application research of load forecasting, summarized the characteristics of load forecasting and influencing factors, summed up common methods of short-term load forecasting, and analyzed the advantages and disadvantages of each method then introduced statistical learning theory and the principle of SVM as the basis of support vector machine (SVM ) theory, SVM regression model is derived this paper adopted least squares support vector machine (LSSVM) model, according to the historical load data and meteorological data of a certain area of Zhejiang Taizhou, Analysised the various factors affecting the forecast, summed up the regularity of load change , amended "outliers" in the historical load data,the load forecasting factors to be considered were normalized. The two parameters of LSSVM have a significant impact on the model, but it is still soluted based on the experience currently. So, this paper adopted particle swarm optimization algorithm to optimized
相关搜索: lssvm
svm
负荷预测
SVM 预测
Particle Swarm Optimization machine learning
forecasting lssvm
最小二乘支持向量机
SVM matlab
气象
支持向量
(系统自动生成,下载前可以参看下载内容)
下载文件列表
数据/a23.xls
数据/a45.xls
数据/B2.xls
数据/b3.xls
数据/B4.xls
数据/B5.xls
数据/bdata1.xls
AdaptFunc.m
AdaptFunc1.m
BaseStepPso.m
gaijin.m
InitSwarm.m
pso.m
shorttime.m
基于支持向量机的短期电力负荷预测.doc
数据
数据/a45.xls
数据/B2.xls
数据/b3.xls
数据/B4.xls
数据/B5.xls
数据/bdata1.xls
AdaptFunc.m
AdaptFunc1.m
BaseStepPso.m
gaijin.m
InitSwarm.m
pso.m
shorttime.m
基于支持向量机的短期电力负荷预测.doc
数据
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.