- RMSListener this the code for the java ME record listener. pls try it out using java netbeans program to run it.
- NXP-LPC-ARM- NXP LPC ARM 必须知道的知识.doc
- mazouri 运用 *** ***/ /*狄杰斯克拉算法
- wrqssher 使用大量的有限元法求解偏微分方程
- RBF 径向基函数神经网络示例程序1 径向基函数神经网络示例程序2(An example program of radial basis function neural network)
- wiringpi源码 树莓派gpio读写源码
文件名称:StereoVision_SSD
-
所属分类:
- 标签属性:
- 上传时间:2012-11-16
-
文件大小:2.88mb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
本算法在Matlab2008b 环境下实现。包括main,san 和ssd 三个函数。
这次实现的算法并不是比较两个已经知道的点是否匹配,而是已知一个图形中的特征点,在另外一个图像中找到与其最匹配的点,匹配度用SAD 或者SSD 来度量。
main.m 是程序的入口,包括生成和读入实验数据,调用sad 函数和ssd 函数求匹配点,最后绘
制出最后的结果。sad.m 是用sad 度量方法在另一图中求解匹配点的函数实现,有3 个参数
y=sad(x,image1,image2)。其中x 是代匹配的数据,image1 是图像1 数据,image2 是图像2 数据。
从理论上分析,ssd 比sad 算法要复杂一点,经过测试,在一幅640*480 的图像中寻找10 个匹配点数据SAD 用时25.062519 秒,SSD 用时25.291432 秒。-The algorithm Matlab2008b environment to achieve. Including the main, san, and ssd three functions.
The implementation of the algorithm is not the point of comparing two matches already know, but the known feature points in a graphic, an image found in the other match with the most points, matching measured with the SAD or SSD.
main.m is the entry, including the generation and reading test data, call the sad ssd function evaluation functions and matching points, and finally draw the final result. sad.m measure is sad figure in another match point in the function implementation to solve, there are three parameters
y = sad (x, image1, image2). Where x is the generation of matching data, image1 is the data image 1, image2 is the image 2 data.
From the theoretical analysis, ssd little more complicated than the sad algorithm, tested in a 640* 480 images of 10 match points in the search for data using time 25.062519 seconds SAD, SSD with time 25.291432 seconds.
这次实现的算法并不是比较两个已经知道的点是否匹配,而是已知一个图形中的特征点,在另外一个图像中找到与其最匹配的点,匹配度用SAD 或者SSD 来度量。
main.m 是程序的入口,包括生成和读入实验数据,调用sad 函数和ssd 函数求匹配点,最后绘
制出最后的结果。sad.m 是用sad 度量方法在另一图中求解匹配点的函数实现,有3 个参数
y=sad(x,image1,image2)。其中x 是代匹配的数据,image1 是图像1 数据,image2 是图像2 数据。
从理论上分析,ssd 比sad 算法要复杂一点,经过测试,在一幅640*480 的图像中寻找10 个匹配点数据SAD 用时25.062519 秒,SSD 用时25.291432 秒。-The algorithm Matlab2008b environment to achieve. Including the main, san, and ssd three functions.
The implementation of the algorithm is not the point of comparing two matches already know, but the known feature points in a graphic, an image found in the other match with the most points, matching measured with the SAD or SSD.
main.m is the entry, including the generation and reading test data, call the sad ssd function evaluation functions and matching points, and finally draw the final result. sad.m measure is sad figure in another match point in the function implementation to solve, there are three parameters
y = sad (x, image1, image2). Where x is the generation of matching data, image1 is the data image 1, image2 is the image 2 data.
From the theoretical analysis, ssd little more complicated than the sad algorithm, tested in a 640* 480 images of 10 match points in the search for data using time 25.062519 seconds SAD, SSD with time 25.291432 seconds.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
StereoVision_SSD/feature.dat
StereoVision_SSD/image1.tif
StereoVision_SSD/image2.tif
StereoVision_SSD/main.m
StereoVision_SSD/sad.m
StereoVision_SSD/SAD.tif
StereoVision_SSD/ssd.m
StereoVision_SSD/SSD.tif
StereoVision_SSD/原图.tif
StereoVision_SSD
StereoVision_SSD/image1.tif
StereoVision_SSD/image2.tif
StereoVision_SSD/main.m
StereoVision_SSD/sad.m
StereoVision_SSD/SAD.tif
StereoVision_SSD/ssd.m
StereoVision_SSD/SSD.tif
StereoVision_SSD/原图.tif
StereoVision_SSD
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.