文件名称:fit_ML_maxwell
-
所属分类:
- 标签属性:
- 上传时间:2012-11-16
-
文件大小:1.3kb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
fit_ML_normal - Maximum Likelihood fit of the log-normal distribution of i.i.d. samples!.
Given the samples of a log-normal distribution, the PDF parameter is found
fits data to the probability of the form:
p(x) = sqrt(1/(2*pi))/(s*x)*exp(- (log(x-m)^2)/(2*s^2))
with parameters: m,s
format: result = fit_ML_log_normal( x,hAx )
input: x - vector, samples with log-normal distribution to be parameterized
hAx - handle of an axis, on which the fitted distribution is plotted
if h is given empty, a figure is created.
output: result - structure with the fields
m,s - fitted parameters
CRB_m,CRB_s - Cram?r-Rao Bound for the estimator value
RMS - RMS error of the estimation
type - ML - fit_ML_normal - Maximum Likelihood fit of the log-normal distribution of i.i.d. samples!.
Given the samples of a log-normal distribution, the PDF parameter is found
fits data to the probability of the form:
p(x) = sqrt(1/(2*pi))/(s*x)*exp(- (log(x-m)^2)/(2*s^2))
with parameters: m,s
format: result = fit_ML_log_normal( x,hAx )
input: x - vector, samples with log-normal distribution to be parameterized
hAx - handle of an axis, on which the fitted distribution is plotted
if h is given empty, a figure is created.
output: result - structure with the fields
m,s - fitted parameters
CRB_m,CRB_s - Cram?r-Rao Bound for the estimator value
RMS - RMS error of the estimation
type - ML
Given the samples of a log-normal distribution, the PDF parameter is found
fits data to the probability of the form:
p(x) = sqrt(1/(2*pi))/(s*x)*exp(- (log(x-m)^2)/(2*s^2))
with parameters: m,s
format: result = fit_ML_log_normal( x,hAx )
input: x - vector, samples with log-normal distribution to be parameterized
hAx - handle of an axis, on which the fitted distribution is plotted
if h is given empty, a figure is created.
output: result - structure with the fields
m,s - fitted parameters
CRB_m,CRB_s - Cram?r-Rao Bound for the estimator value
RMS - RMS error of the estimation
type - ML - fit_ML_normal - Maximum Likelihood fit of the log-normal distribution of i.i.d. samples!.
Given the samples of a log-normal distribution, the PDF parameter is found
fits data to the probability of the form:
p(x) = sqrt(1/(2*pi))/(s*x)*exp(- (log(x-m)^2)/(2*s^2))
with parameters: m,s
format: result = fit_ML_log_normal( x,hAx )
input: x - vector, samples with log-normal distribution to be parameterized
hAx - handle of an axis, on which the fitted distribution is plotted
if h is given empty, a figure is created.
output: result - structure with the fields
m,s - fitted parameters
CRB_m,CRB_s - Cram?r-Rao Bound for the estimator value
RMS - RMS error of the estimation
type - ML
(系统自动生成,下载前可以参看下载内容)
下载文件列表
fit_ML_maxwell.m
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.