文件名称:kMeansCluster
介绍说明--下载内容来自于网络,使用问题请自行百度
kMeansCluster - Simple k means clustering algorithm
Author: Kardi Teknomo, Ph.D.
Purpose: classify the objects in data matrix based on the attributes
Criteria: minimize Euclidean distance between centroids and object points
For more explanation of the algorithm, see http://people.revoledu.com/kardi/tutorial/kMean/index.html
Output: matrix data plus an additional column represent the group of each object
-kMeansCluster - Simple k means clustering algorithm
Author: Kardi Teknomo, Ph.D.
Purpose: classify the objects in data matrix based on the attributes
Criteria: minimize Euclidean distance between centroids and object points
For more explanation of the algorithm, see http://people.revoledu.com/kardi/tutorial/kMean/index.html
Output: matrix data plus an additional column represent the group of each object
Author: Kardi Teknomo, Ph.D.
Purpose: classify the objects in data matrix based on the attributes
Criteria: minimize Euclidean distance between centroids and object points
For more explanation of the algorithm, see http://people.revoledu.com/kardi/tutorial/kMean/index.html
Output: matrix data plus an additional column represent the group of each object
-kMeansCluster - Simple k means clustering algorithm
Author: Kardi Teknomo, Ph.D.
Purpose: classify the objects in data matrix based on the attributes
Criteria: minimize Euclidean distance between centroids and object points
For more explanation of the algorithm, see http://people.revoledu.com/kardi/tutorial/kMean/index.html
Output: matrix data plus an additional column represent the group of each object
相关搜索: classify kmean
(系统自动生成,下载前可以参看下载内容)
下载文件列表
kMeansCluster.m
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.