文件名称:Multi-step-prediction-of-chaotic
介绍说明--下载内容来自于网络,使用问题请自行百度
Multi-step-prediction of chaotic time series based
on co-evolutionary recurrent neural network
协同进化递归神经网络的多步混沌时间序列预测-This paper proposes a co-evolutionary recurrent neural network (CERNN) for the multi-step-prediction of chaotic
time series, it estimates the proper parameters of phase space reconstruction and optimizes the structure of recurrent
neural networks by co-evolutionary strategy. The searching space was separated into two subspaces and the individuals
are trained in a parallel computational procedure. It can dynamically combine the embedding method with the capability
of recurrent neural network to incorporate past experience due to internal recurrence. The eff ectiveness of CERNN is
evaluated by using three benchmark chaotic time series data sets: the Lorenz series, Mackey–Glass series and real-world
sun spot series. The simulation results show that CERNN improves the performances of multi-step-prediction of chaotic
time series.
on co-evolutionary recurrent neural network
协同进化递归神经网络的多步混沌时间序列预测-This paper proposes a co-evolutionary recurrent neural network (CERNN) for the multi-step-prediction of chaotic
time series, it estimates the proper parameters of phase space reconstruction and optimizes the structure of recurrent
neural networks by co-evolutionary strategy. The searching space was separated into two subspaces and the individuals
are trained in a parallel computational procedure. It can dynamically combine the embedding method with the capability
of recurrent neural network to incorporate past experience due to internal recurrence. The eff ectiveness of CERNN is
evaluated by using three benchmark chaotic time series data sets: the Lorenz series, Mackey–Glass series and real-world
sun spot series. The simulation results show that CERNN improves the performances of multi-step-prediction of chaotic
time series.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
Multi-step-prediction of chaotic.pdf
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.