文件名称:lubanglssvm
介绍说明--下载内容来自于网络,使用问题请自行百度
基于鲁棒学习的最小二乘支持向量机及其应用
鉴于最小二乘支持向量机比标准支持向量机具有更高的计算效率和拟合精度, 但缺少标准支持向量机的鲁
棒性, 即当采样数据存在奇异点或者误差变量的高斯分布假设不成立时, 会导致不稳健的估计结果, 提出了一种鲁棒
最小二乘支持向量机方法. 该方法在最小二乘支持向量机基础上, 通过引入鲁棒学习方法来获得鲁棒估计. 仿真分析
及某湿法冶金厂的应用实例验证了该方法的可行性和有效性.- Least squares support vector machine(LS-SVM) is computationally more effi cient than the standard SVM, but
unfortunately the robustness of standard SVM is lost. LS-SVM might lead to estimates which are less robust with respect
to outliers on the data or when the assumption of a Gaussian distribution for error variables is not realistic. Therefore,
an approach based on the robust least squares support vector machine(RLS-SVM) is proposed, in which robust learning
algorithm(RLA) is employed to enhance the robust capability of LS-SVM. Finally, simulation analysis and the modeling of
a typical plant for hydrometallurgy illustrate the effectiveness and feasibility of the presented method.
鉴于最小二乘支持向量机比标准支持向量机具有更高的计算效率和拟合精度, 但缺少标准支持向量机的鲁
棒性, 即当采样数据存在奇异点或者误差变量的高斯分布假设不成立时, 会导致不稳健的估计结果, 提出了一种鲁棒
最小二乘支持向量机方法. 该方法在最小二乘支持向量机基础上, 通过引入鲁棒学习方法来获得鲁棒估计. 仿真分析
及某湿法冶金厂的应用实例验证了该方法的可行性和有效性.- Least squares support vector machine(LS-SVM) is computationally more effi cient than the standard SVM, but
unfortunately the robustness of standard SVM is lost. LS-SVM might lead to estimates which are less robust with respect
to outliers on the data or when the assumption of a Gaussian distribution for error variables is not realistic. Therefore,
an approach based on the robust least squares support vector machine(RLS-SVM) is proposed, in which robust learning
algorithm(RLA) is employed to enhance the robust capability of LS-SVM. Finally, simulation analysis and the modeling of
a typical plant for hydrometallurgy illustrate the effectiveness and feasibility of the presented method.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
基于鲁棒学习的最小二乘支持向量机及其应用.pdf
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.