文件名称:Minimum-Bayes-classifier-error-rate
介绍说明--下载内容来自于网络,使用问题请自行百度
这是模式识别中最小错误率Bayes分类器设计方案。
自行完善了在不同先验概率的条件下,男、女错误率和总错误率的统计,放入各个数组当中。
全部程序由主函数、最大似然估计求取概率密度子函数、最小错误率贝叶斯分类器决策子函数三块组成。
调用最大似然估计求取概率密度子函数时,第一步获取样本数据,存储为矩阵;第二步对矩阵的每一行求和,并除以样本总数N,得到平均值向量;第三步是应用公式(3-43)采用矩阵运算和循环控制语句,求得协方差矩阵;第四步通过协方差矩阵求得方差和相关系数,从而得到概率密度函数。
调用最小错误率贝叶斯分类器决策子函数时,根据先验概率数组,通过比较概率大小判断一个体重身高二维向量代表的人是男是女。
主函数第一步打开“MAIL.TXT”和“FEMALE.TXT”文件,并调用最大似然估计求取概率密度子函数,对分类器进行训练。第二步打开“test2.txt”,调用最小错误率贝叶斯分类器决策子函数,然后再将数组中逐一与已知性别的数据比较,就可以得到不同先验概率条件下错误率的统计。
-This is the minimum error rate pattern recognition Bayes classifier design.
Self- improvement prior probability in different conditions , male , female and total error rate error rate statistics , into which each array .
All programs from the main function , maximum likelihood estimation subroutine strike probability density , the minimum error rate Bayesian classifier composed of decision-making three subfunctions .
Strike called maximum likelihood estimate probability density subroutine , the first step to obtain the sample data , stored as a matrix the second step of the matrix, each row sum , and divided by the total number of samples N, be the average vector third step is to application of the formula ( 3-43 ) using matrix and loop control statements , obtain the covariance matrix fourth step through the variance-covariance matrix and correlation coefficient obtained , resulting in the probability density function .
Call the minimum error rate decision Functions Bayesian
自行完善了在不同先验概率的条件下,男、女错误率和总错误率的统计,放入各个数组当中。
全部程序由主函数、最大似然估计求取概率密度子函数、最小错误率贝叶斯分类器决策子函数三块组成。
调用最大似然估计求取概率密度子函数时,第一步获取样本数据,存储为矩阵;第二步对矩阵的每一行求和,并除以样本总数N,得到平均值向量;第三步是应用公式(3-43)采用矩阵运算和循环控制语句,求得协方差矩阵;第四步通过协方差矩阵求得方差和相关系数,从而得到概率密度函数。
调用最小错误率贝叶斯分类器决策子函数时,根据先验概率数组,通过比较概率大小判断一个体重身高二维向量代表的人是男是女。
主函数第一步打开“MAIL.TXT”和“FEMALE.TXT”文件,并调用最大似然估计求取概率密度子函数,对分类器进行训练。第二步打开“test2.txt”,调用最小错误率贝叶斯分类器决策子函数,然后再将数组中逐一与已知性别的数据比较,就可以得到不同先验概率条件下错误率的统计。
-This is the minimum error rate pattern recognition Bayes classifier design.
Self- improvement prior probability in different conditions , male , female and total error rate error rate statistics , into which each array .
All programs from the main function , maximum likelihood estimation subroutine strike probability density , the minimum error rate Bayesian classifier composed of decision-making three subfunctions .
Strike called maximum likelihood estimate probability density subroutine , the first step to obtain the sample data , stored as a matrix the second step of the matrix, each row sum , and divided by the total number of samples N, be the average vector third step is to application of the formula ( 3-43 ) using matrix and loop control statements , obtain the covariance matrix fourth step through the variance-covariance matrix and correlation coefficient obtained , resulting in the probability density function .
Call the minimum error rate decision Functions Bayesian
(系统自动生成,下载前可以参看下载内容)
下载文件列表
determine.m
FEMALE.TXT
likelihood.m
MALE.TXT
mat.asv
mat.m
test1.txt
test2.txt
determine.asv
FEMALE.TXT
likelihood.m
MALE.TXT
mat.asv
mat.m
test1.txt
test2.txt
determine.asv
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.